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Semiconductor Hillimeter Wavelength Electronics

1. Introduction

1.1 Scope

)This report describes progress and results obtained in the first year of

the subject research program. The purpose of the program is to investigate new

and innovative approaches to the generation and amplification and detection of

electromagnetic signals in the millimeter wave spectrum. It incorporates

theoretical and applied studies in four areas:

i) Semiconductor material synthesis and growth)

ii) Electrical characterization of these materials,

iii) Device modeling and fabrication,

iv) New device concepts

It is our desire to understand more fully the origin and consequences of the

physical limitations of semiconductor materials appropriate for use at milli-

metric wavelengths, and through this knowledge to suggest new materials and/

or devices with improved properties.

During the period 1 September 1979 to 30 August 1980, we have initiated

the growth of heavily doped GaAs, developed an apparatus for the measurement

of high field transport properties, examined some impurity effects in GaAs,

and laid the theoretical groundwork for a systematic study of inertial effects

in semiconductor charge transport, including the concept of Zener oscillations.

We have also carried out Gunn oscillator experiments that have yielded power

levels of 5-6 mWat frequencies near 150 GHz. A new millimeter wave mixer diode

configuration is also being explored. Progress is sunmarized in this intro-

ductory section. Detailed discussions are presented in the body of the report..

0 6
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1.2 Program Participants

The following lists those who have contributed to project activities

during this reporting period:

FACULTY GRADUATE ASSISTANTS UNDERGRADUATE ASSISTANTS

B. Abraham-Shrauner J. Bornholdt S. Ewall
R. E. Goldwasser, Co. P.I. P. Chen M. Riess
M. W. Muller G. Homsey J. Wachsman
F. J. Rosenbaun, P.I. H. Rohdin J. Wendt
C. M. Wolfe J. Tang

S. Von Rump

1.3 Summary

Epitaxial Material Growth for Device Studies

An Arsenic Trichloride-Gallium-Hydrogen epitaxial reactor has been built,

calibrated, and operated for the growth of multilayer millimeter wave GaAs

structures. The system employs hydrogen sulfide gas doping to obtain the rapid

changes in the epitaxial layer concentration that are required in millimeter wave

devices. The system is of the rolling furnace design that permits rapid heating

and cooling of the wafers. The rapid cooling minimizes dopant redistribution

in the layers after growth. Aluminum tubing and fittings have been used in

the H 2S lines to minimize doping history effects. The system background doping

can be controlled by setting the As Ce3 bubbler control temperature. The doping

flow rate has been correlated to the epitaxial layer concentration over three

orders of magnitude. The system has been designed for GaAs, however, the system

is compatible with the PC 3-In Indium Phosphide system requirements. The present

system yields highly uniform mirror like layers and requires no significant

vapor etching to obtain low dislocation interfaces. Layers as thin as .15um

appear uniform.
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Impurity Incorporation and Redistribution Durina Evitaxial Growth

The incorporation of impurities in epitaxially grown layers of semiconductors

and their subsequent redistribution often leads to impurity and carrier density

profiles that are unforeseen, and that may be unfavorable for certain applications,

for example, the formation of high resistance or inverted polarity layers in

Gunn devices. An explanation of these effects has been proposed which takes

into account the effect on the impurity redistribution of the built-in electric

fields. The original work on this phenomenon assumes that during growth the

newly incorporated impurities are always in diffusive equilibrium, and that

there is no outdiffision from the substrate.

We have determined that under the usual growth conditions these idealizations

cannot be expected to hold, and we have developed a partly analytical and partly

numerical model that mirrors the time-dependent behavior more realistically.

Programming is nearly complete, and results of the computation should be avail-

able during the next reporting period.

Diffusion and Electronic Properties of Cr in GaAs

The most common method for producing semi-insulating GaAs is chromium doping.

Remarkable features of this technique are: its insensitivity to Cr concentration

during bulk growth, and the variety of redistribution behavior during processing.

We have surveyed the experimental literature on Cr doping and diffusion,

and we have developed a model that appears capable of accounting for the obser-

vations. The central features of this model are: The existence of at least

two electronic states of the Cr ion, a mobile, interstitial donor level, and a

set of relatively immobile, substitutional acceptor levels; and the thermodynamic

equilibrium of vacancies at the surface and in the bulk.

.___,__ Ii
..... . . . . -' I L i . ,_,,.. __ .= I . = -. , j . . .
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The initial distribution of Cr among its states is critically dependent on

the conditions of growth and impurity incorporation: temperature, other impurities,

vacancy concentration, etc. Redistribution during processing depends both on the

initial distribution and on processing conditions: temperature, atmosphere,

presence or absence of encapsulation, and new impurities.

The behavior of the model is consistent with observed electronic properties

and concentration profiles, and is not in conflict with nuclear resonance and

optical studies of Cr levels.

System for the Transport Analysis of Semiconductor Materials

The conception, design, and realization of a system for the transport analysis

of semiconductor materials is presented. A survey of the relevant literature

on transport measurements examines previously developed theory and experimental

methods, and some unresolved problems are defined. Based on this survey, a measure-

ment system has been developed using the microwave time-of-flight method. An electron

beam is deflected past an externally biased semiconductor sample, producing a

time-varying space charge which travels through the sample and induces a current

in the external curcuit. The detected signal is a function of the transport

mechanisms of the material, which can be calculated by a proper interpretation

of the measured results. The two properties of interest are velocity and dif-

fusion as a function of applied electric field.

The existing theory of velocity-field measurement is presented, and extended

to the general case of nonuniform electric field across the sample caused by

the doping profile. An algorithm is described which permits the construction

of the velocity-field curve based on microwave phase measurements, taking into

account the nonuniform doping density of the sample and hence the non-constant
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electric field in it. A model for the effects of diffusion on the measured

signal is presented for the case of uniform electric field. The resulting

equation is solved and evaluated in terms of the error introduced by assuming

that the measured signal is unaffected by diffusion. This simple model predicts

errors as high as 50% for currently accepted values of velocity and diffusion for

GaAs.

Contributions made to the physical design of the microwave time-of-flight

method include the following: Two modulation frequencies, I GHz and 12 GHz, are

available, chosen according to the theoretical considerations in order to provide

the most accurate data possible and to allow both velocity and diffusion measure-

ments. The apparatus permits conventional time-of-flight measurement if desired.

The electron accelerating voltage is adjustable, making beam penetration depth

into the sample variable. The sample may be heated or cooled. Calibration of

the microwave signals is established by direct measurement without a sample.

A low noise microwave amplifier provides the signal gain necessary in this case.

Measurement accuracy is greatly enhanced by use of an automatic network analyzer

system. Finally, the entire experimental procedure is under computer control.

A full report describing the system is presented under separate cover.

Harmonic Generation in Transferred Electron Devices

The harmonic generation in millimeter wave Gunn diodes has been investi-

gated in the 35-150 GHz frequency range. Power outputs at the fundamental,

second and third harmonics have been measured on diodes fabricated from flat

doped epitaxial wafers and a cathode notch structure. The fundamental power

outputs of all the devices tested, peaked at near 40 GHz regardless of their

active layer lengths. The harmonic power of the packaged devices

S- -
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has been measured in three circuit configurations. The second and third harmonic

powers have been found to decrease extremely rapidly above 100 GHz for all of

the flat doped devices. Significant improvement in the harmonic powers above

100 GHz has been measured on devices that have a cathode doping notch. A power

output of 5-6 mW has been observed at 144 GHz on the cathode notch devices.

The highest power obtained from the flat doped devices at this frequency is

.35 mW.

The improvement which is observed in the harmonic output of the cathode

notch structure is likely to be due to a reduction in the formation time of the

accumulation layer and a reduction in the cathode dead space that has been pre-

dicted by others using Monte Carlo analysis.

Bulk and Contact Phenomena in Millimeter Wave Diodes

In order to reasonably model the behavior of millimeter wave diodes it is

necessary to understand processes which occur in the bulk material and at the

contacts. We have developed closed form expressions for the current-voltage

(I-V) relation describing avalanche breakdown in GaAs in both the small-and-

large-signal regimes. Similarly, we have formulated the I-V relation for a

particular contact system known as the Mott barrier, which has the property

of nearly constant junction capacitance under forward or reverse bias.

The finite element method has been applied to the analysis of Schottky

barrier diodes in both one and two dimensional simulations. For GaAs, both

the electron velocity and the diffusion coefficient are field dependent. In

the Schottky depletion region these quantities also vary in position due to the

non-constant electric field. We have included these effects and examined the

depletion approximations in a one dimensional Schottky barrier diode.
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A new diode configuration suitable for use as a sub-harmonically pumped

millimeter wave mixer has been conceived and is being analyzed with the methods

described above. Design and performance predictions are under study and an effort

has been initiated to fabricate the new structure.

Inertial Transport

Devices of interest in this project are sufficiently small or fast, or

operate at high enough frequencies so that the mean free path of the carriers

can be comparable with device dimensions, or the mean free time with switching

times or oscillation periods. Under such operating conditions, carrier trans-

port is not adequately described by the customary friction-dominated Ohm's law

behavior and collision-free or nearly collision-free inertial or ballistic

transport may be a more realistic model. Moreover, the achievement of such

transport conditions appears desirable, because in this regime transit and

response times need not be limited by the carrier saturation velocities of

ohmic transport.

Inertial transport in solids is similar in some ways with vacuum electronics,

but it differs from that technology in the presence of the fixed charge of im-

mobile impurities, and in the non-Newtonian carrier dynamics imposed by the band

structure. Existing accounts of inertial transport have not yet responded ade-

quately to these differences.

We have derived the general solution for the steady-state potential of

ballistic transport in a one-dimensional semiconductor as a function of the

distance from the cathode for the space-charge limited diode with a constant

effective mass. Since the solution implies some strange carrier behavior, we

have checked the uniqueness of the current-voltage curve and its temporal and

spatial stability. The current-voltage curve is singlevalued for large current

<'
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densities. A proof of that has been given and a relation for determining the

smallest current for a single-valued relation has been stated.

The steady-state system is found marginally stable by a temporal stability

analysis both for fluctuations that vary with the spatial coordinate in the

carrier direction and those that vary with spatial coordinates transverse to

that direction. The current density-electric field curve exhibits multivalued

currents at a higher current than that found for the current-voltage curve.

The negative differential resistance is current-controlled. As a result, filament

formation which destroys the one-dimensional approximation or unstable device

operation may occur when the current is multivalued. Finite temperature effects

have been included in a simple fluid model for the electrons.

We have also developed the steady-state theory of a space-charge limited

solid-state diode with carriers whose effective mass varies with energy in a

manrer characteristic of the small-effective-mass direct gap semiconductors

most promising for our applications. We find various modifications from the

existing,constant m theory; for example, an asymptotic first power rather than

three-halves power current-voltage relation. The modifications are significant

under conditions expected to be realized in normal device operations.

Zener Oscillations

In the extreme high-voltage and/or high frequency submillimeter regime,

collision lifetimes can be long compared with an oscillation period. Under

these conditions carrier dynamics becomes entirely band-structure dominated,

and in the usual semiclassical picture, carriers are expected to carry out real-

space Zener oscillations.

The observability of this phenomenon, and of the equivalent Stark quanti-

zation of free-carrier orbits (the Stark ladder) has been questioned in the
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literature. We have carried out an extensive critical review of this controversy

and of its background. The detailed report on this material is intended to serve

as a reference for the continuation of this work. We conclude that the phenomena

limiting the realization of Zener oscillations are scattering and interband

tunneling. It appears that conditions should be achievable under which the

oscillations can be observed.

1.4 Talks and Papers Published

M. W. Muller, "Inertial Transport with Non-Parabolic Bands", late news

paper given 9-23-80 at The International Symposium on GaAs and Related Compounds,

Vienna, Austria.



2. Materials Growth

2.1 Epitaxial Material Growth for Device Studies

J. Teng and R. E. Goldwasser

2.1.1 Vapor Phase Epitaxial Growth of GaAs

The GaAs epitaxial layers are grown in an AsCe3-Ga-H2 flow system of the

type first described by Knight et al. 1 This appears to be intrinsically a

very reliable system and has the advantage over other systems that all the

starting materials are obtainable in a state of high purity. Efforts have

been directed, first, to reducing impurities in the system, and second, to

controlling physical growth processes which cause variations in electrical

properties.

The primary objectives were to (i) set up a reactor of maximum cleanliness

and leak-tightness so that residual impurities are minimized, (ii) maintain

the purity of the system by careful preparation of substrates and prevention

of impurity build-up from outside, (iii) optimize the growth procedure by

identifying and controlling the significant parameters.

The reactor and furnace are shown schematically in figure 1. Each zone

has an independent temperature controller. The temperature profile of the

two-zone furnace is shown in figure 2. The reactor tube, seed holder and

melt boat are constructed of quartz. All the gas lines up to the flow valves,

except the aluminum H2S dopant line, are stainless steel. The AsCt3 bubbler

is constructed of Pyrex and kept cooled by a constant temperature refrigerated

circulator attached to the water bath.

After construction, the system was dismantled, the quartz and pyrex parts

cleaned thoroughly in aqua regia and rinsed in deionized water, the stainless
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steel tubing cleaned using isopropyl and tricholor ethylene one part each,

and dried by nitrogen. This cleaning procedure removes surface impurities

which may be introduced by glassblowing. The system has been checked for

leak-tightness at each joint.

The AsCC3 (Mining and Chemical Products, 99.999% pure, in 100g ampoules)

is then loaded and hydrogen passed through it for several hours to distill

off the first fraction. If this is not done, the first epitaxial layers have

higher carrier concentration than normal. A final clean up of the system to

remove impurities is carried out by running the furnace 200C hotter than a

normal deposition run.

The gallium (99.999% pure, 25 g Vingots) is then loaded in the source boat.

The growth process occurs in two stages, saturation of the source and growth

of the layer itself. For the first stage, the Ga source (melting point at

29.78*C), is loaded in zone 1 of the furnace, whose temperature is raised to

a level around 840*C. High purity hydrogen from a palladium diffuser bypasses

theAsCe3 bubbler. The H2 flow rate is set to 120 mZ/sec. The H2 flow rate in

the dopant line (10 ppm H2S in N2) is set to 200 mZ/sec. After one hour, the

valve o the bubbler is opened and the hydrogen is bubbled through the AsCL3

source (kept at 100C).

The hydrogen, as a carrier, transports the AsC einto the Ga-source side

of the furnace. The initial reaction taking place when the gas mixture heats

up is

4 AsCZ 3 + 6H --- 12 HCL+As 4

While the HCt reacts with the Ga source to form GaCL and GaCt3 , the arsenic vapor

is completely absorbed by the liquid Ga source until saturation occurs at -2.25

,!S
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atomic percent of arsenic. Then a GaAs skin forms around the Ga source and

the arsenic vapor passes on down the furnace tube, together with GaCtvapor

produced by reaction between theIHCI-and the gallium.

At this time, the substrate is inserted, with its polished surface toward

the stream, and the temperature in zone 2 is lowered to reach a steady-tempera-

ture of about 750*C. TheGaCtand As4 vapors combine in zone 2, and the epi-

taxial GaAs begins to grow thereon according to the reaction

GaCt + As4 ----4GaAs + 2 GaCe3

However, the temperatures (840*c in zone 1, 830*C in zone 2) and the flow rates

are maintained for 6 hours, then the temperature controller in zone 2 is changed

to 760°C. After 2 more hours of saturation under these conditions, the AsCZ3

and the furnace are turned off and hydrogen flow rate lowered to 50 mE/min.

The Ga source is checked visually for saturation, and the system is ready for

GaAs epitaxial layer growth.

Because of differences in reactor design, residual impurities and other

factors, the optimum growth conditions vary from one reactor to another.

Typical growth conditions are gallium temperatures from 800* to 850'C, growth

temperatures from 720* to 760*C, growth temperature gradients from 5*C to

15C cm- hydrogen flow rate from 50 to 300 mt/min.

The growth data and procedure which we use, are as follow:

Ga source temperature: 830*C

Growth temperature: 755* -760°C

Growth temperature gradient -17*C per inch

The furnace is turned on to the preceeding temperature settings first, while

the reactor tubing is not in the furnace. After about one hour, the

'wo
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temperatures in the furnace are in the steady state. Meanwhile, the prepared

GaAs substrate is loaded in the growth region. The hydrogren flow rates in

the carrier line (with the AsCe3 bypassed) and the dopant line are adjusted to

220 mt/min and 200 mt/min respectively. The reactor tubing is then flushed

at these two high flow rates of hydrogen for more than 20 minutes, then the

hot furnace can be rolled in the growth position. The AsC 3 is turned on and

10 minutes later, the furnace temperature again approaches its steady state

value. After theAsCl3 is turned on for 5 minutes, we reduce the hydrogen flows
3

in both the carrier and dopant lines to 120 mt/min and 50 mt/min, respectively.

At the same time the epitaxial growth is started.

We can increase the carrier concentration of the epitaxial layer by adding

H2 S dopants in the gas stream to the growth region. The flow rate of H2S dopants

vs. the carrier concentration of the epitaxial layer measured by capacitance-

voltage method is shown in Figure 3. After the specified growth time, the

AsCe3 1s turned off (hydrogen bypassed) and the furnace is rolled away from the

reactor tubing.

2.1.2 Substrate Preparation

The epitaxial layers were grown on chrominum or silicon doped substrates.

The crystallographic orientation is 2* off the (100) plane to prevent the for-

2mation of hillocks

After the substrates are cleaved to desired dimensions, they are cleaned

with organic solvents in a beaker. Trichloroethylene, acetone, and methanol

in sequence are used for this purpose. The substrate is dried with bibulous

paper and nitrogen. The sample is then etched in a 5H2so :lH 0 :lH 0 solution.
52 04: 2 2 2

This etchant is first cooled for 10 minutes after mixing, while it is being

stirred. The sample is then put in the etchant and stirred for 5 minutes.
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With minimal expobure to air, the substrates are then rinsed in deionized

water, and dried with bibulous paper and nitrogen.

After etching, the substrate is placed in the sample holder and inserted

in the furnace. The reactor is then flushed with hydrogen at high flow rates

for 20 to 25 minutes, and the furnace is folled to the growth position.

2.1.3 Results and Discussion

Under the preceeding growth conditions a growth rate of about 10 microns

per hour is obtained. The appearance of the grown layers is generally smooth

and almost featureless. One phenomenon encountered was that the growth rate

tended to drop in successive runs due to the build-up of wall deposits which

provided competitive areas of growth.

There is no vapor etching of the sample before growth--the prepared samples

appear not to need it-and transfer of impurities from the heavily doped sub-

strate to its surrounding is thus minimized.

The thickness measurement of the epitaxial layer is done by the stain

etching method. The sample is sectioned and placed in a solution of 1HF:3HNO 3:4H2 0

for about 4 seconds. The stained sample is viewed edgewise in a calibrated

microscope. The measurement resolution is limited by how well the microscope

could focus on the top rounded surface of the epitaxy and the interface. Deple-

tion layer capacitance-voltage measurements can give a more accuract determina-

tion of the epitaxy thickness.

One of the problems which can attend the growth of a high purity epitaxial

layer is the diffusion of impurities from the substrate during growth. This

problem can be overcome by the growth of a heavily doped, high purity "buffer"

layer on to the substrate prior to the growth of the active region. The buffer

layer effectively isolates the active layer from the impure substrate. It is

.!
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also often desireable to grow a heavily doped GaAs layer after growth of the

active region. The reason for doing this is because it offers the best method

of obtaining a ohmic, low resistance contact to the active region.

The doping profile can be measured by the capacitance-voltage method.

This involves evaporating a number of 20 nil diameter gold Schottky barrier

dot diodes on the epitaxial layer. The dot is biased negative with respect to

the substrate, the capacitance of the depletion region under the dot is measured

as a function of the applied bias. From this data the doping concentration pro-

file can be measured. It is given by

-C
3

qc7A3 
d)

where

C - depletion capacitance

V - applied bias to dot

A - dot area.

The measured capacitance may be used to calculate the depletion depth

eA
XK - C

where x - depletion distance into the epitaxy. This method has been shown to

yield quite accurate doping profile measurements4 with only slight error due

to spreading capacitance.

The range of x over which the carrier concentration can be measured is

limited by the avalanche breakdown of the junction which eventually occurs

as the bias voltage is increased. The dependences of the avalanche breakdown

voltage of the junction, the maximum penetration, and the depth resolution,

* I
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Table 1. Dpendence of Profile Properties on Doping Den'sity.

Doping Maximum Maximum Depth
density Depth d.c. resolution

(C-)W)volts (Debye length)

I08 500 0.50

1015 12 100 0.50

106 2 20 0.05

1017 0.3 '4 0.015

=OEM,. *
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on the carrier concentration in the layer are approximately as indicated by

Table 1. The profiling of a layer thicker than the maximum denth indicated

above can be obtained by step etching to build up a piecewise profile plot

of the whole layer. Figure 4 shows the profile obtained on one of our samples

via the step-etch technique.

A feature of the epitaxial layers is the persistant occurrence of growth

'pyramids' or 'hillocks'. The formation of the 'pyramids' or 'hillocks'5 is

dependent both on the experimental procedure used and the quality and orienta-

tion of the substrate. For the growth system we used, the number of grown

pyramids will be increased when the substrate is moved to the lower temperature

region (below 745*C) of the reactor tubing.

As the Ga source is used up, the surface area of the gallium decreased

and this should slow down the gallium transfer rate and lower the Ga/As ratio.

This may explain the systematic decrease in carrier concentration with run

sequence and the steep impurity profiles obtained at the end of-the useful life

of a gallium source, when surface tension forces may suddently shrink the gallium.

The AsCl3-Ga-H 2 reaction has been used to produce low carrier cor.entration

'background doped' GaAs which has been made into high power Gunn oscillators

and other millimeter wave devices. The basis requirement for the improvement

of the epitaxial layer is to improve the control and system cleanness of the

growth process. With commercially available high purity starting material,

carrier concentrations n in the 1-2x104 cm- 3 range can be obtained.

2.1.4 Sample Fabrication for Velocity-Field Measurements

The schematic diagram of the sample used for the velocity-field measure-

ment is shown in Fig. 6. A GaAs epitaxial layer is grown on a high doped GaAs

substrate by the vapor-phase AsC3-Ga-H 2 system as indicated in the diagram of

-1I
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2-13

he Schottky barrier

AuaCe-Ni ohmic contact

Figure 6. Cross sectional view of samp'le for
velocity-field measurements
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Fig. 2. The diode consists of a thin aluminum window and a thick aluminum

annulus. In the electron-beam velocity field apparatus, described elsewhere

electrons are injected thorough the thin window when their energies are above

a critical valve that is determined by the contact thickness. The thick annulus

provides a good mechanical region that permits ultrasouic wire bonding to the

Schottky contact. The substrate contact is made using an alloyed gola-gerMa~ium

nickel layer. A thick layer of plated gold has been added to permit thermal

compression die bonding of the sample to a gold plated copper stud.

2.1.4.1 Epitaxial Layer

The epitaxial reactor used to grow the layers is the vapor phase system

described in the preceeding section. The orientation of the GaAs substrate is

chosen Lo be 2* off the (100) planes. The measured carrier concentrations of

18 -3
the substrates are typically lxl0 cm . The substrate is degreased by rinsing

successively in trichloroethylene, acetone, and methenol for 30 seconds each,

and then etched in the 5H 2SO 4:H 20 2:lH2 0 etchant for 5 minutes. It is rinsed

in deionized water of resistivity greater than 14 M-cm. The substrate is

rapidly loaded in the furnace.

The reactor tubing is purged with hydrogen for 20 minutes. The hot fur-

nace is then rolled to the growth position (source 832*C, seed 762*C). The

AsCC3 bubbler is turned on 5 minutes later. The temperature of the furance is

in the steady-state 10 minutes after turning onAsCZ3 . The flow rates of hydro-

gen are then reduced to 120 mZ/min in the AsCt3 line and 50 me/mmn in the dopant

line, meanwhile, the H2S-N2 flow rate is adjusted to 45 mt/min. The buffer

layer is grown for 10 minutes, the measured thickness and concentration are

2.5 im ad 4 1l7 -3
2.5 um and 4×017 cm . The active region is then grown for a predetermined

time. The measured thickness and concentration of the active layer are then

H
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measured using either C-V or an MSI doping profile plotter.

2.1.4.2 Ohmic Contact Fabrication

The sample is mounted on a jig by using parafin with the epitaxial layer

side down. The back of the sample is slowly lapped with 5 um grit on a glass

plate. The thickness of the sample is measured in a micrometer. The sample

is then mounted on a glass slide using parafin to mask the epitaxial layer and

etched in 1% bromine-methanol solutions for 5 minutes to obtain a smooth surface.

The measured resultant substrate thickness is 135 jim.

The AuGe-Ni-Au ohmic contact system is applied to the back of the substrate.

The AuGe used is eutectic composition of 88% Au, 12% Ge by weight. AuGe is

evaporated on the sample followed by a nickel evaporation. The AuGe-Ni evapora-

tion ratio must be between 3:1 and 6:1 to obtain thermally stable contacts with

low specific contact resistance.

The AuGeNi layer is alloyed at 4550C * 26C for one minute in a hydrogen

atmosphere. The wafer is quenched by removing it quickly. A low thermal

mass system is required to obtain a specific contact resistance of less than

-65x10 /D. The wafer in rinsed in hydrofloric acid for 15 seconds and rinsed

in D.I. water. A gold layer of 4 Um is applied to the ohmic contact by plating

the wafer is a neutral bath gold solution (Selrex puragold 125).

2.1.4.3 Schottky Barrier Fabrication

The sample is mounted, ohmic contact side down, on a microscope slide with

black wax. The sample is again cleaned in the organic solvents, trichloroethlene,

acetone, and methanol, and the epitaxial layer is etched lightly just before

the sample is mounted in the evaporation system. The etchant is 5H2SO4:lH202:lH20.

After the sample is rinsed in DI water and dried, it is mounted in the evapora-

tion system. The vacuum is then pumped to a pressure of about 9x10 -7 Torr at

I -.
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which time evaporation proceeds. The source is slowly heated until the At

melts, the shutter is opened, and evaporation thickness monitored with a

transducer mounted close to the samples. The shutter is closed after the

desired thickness, 7000A At, is reached.

Next the sample is removed from the evaporator, the aluminum is covered

with photoresist to be used as a etchant mask as shown in Fig. 7(a). A posi-

tive photoresist, AZ 1350J, is used for this purpose. The sample is prebaked

at 120C for 15 minutes. The filtered AZ 1350J photoresist is spun on the

sample at 4000 RPM, for 60 sec. The photoresist is baked for 30 minutes at

70°C. Then the sample is again coated with photo resist, spun at 5000 RPM

for 60 seconds, and then baked at 70*C for 30 minutes.

An optical mask aligner is then used to expose the photoresist except for

a pattern of 20 mil diameter 2.5 mul thick circular rings. The pattern is

aligned along a cleavage plane. The exposed photoresist is developed and is

then dried and postbaked for 20 minutes at 120*C.

The hardened photoresist ring is used as a mask to etch the thick At layer.

The etchant for the aluminum is Aurostrip (Metex Aurostrip #407) diluted in

deionized water to a concentration of 80 grams/gallon. The aurostrip solution

is heated and stirred, the sample is immersed until all the aluminum is etched

except that under the 2.5 mil ring. The resulting structure is shown in Fig.

7(b). The photoresist mask is then removed in hot acetone, cleaned in organic

solvents, rinsed in deionized water, and prebaked again at 120C for 20 minutes.

AZ 1350J photoresist is applied on the sample and baked at 70*C for 30

minutes, and a second layer spun at 5000 RPM for 60 seconds. After another

baking a5 70*C for 30 minutes, it is exposed on the mask aligner. The purpose

of this photoresist layer is to open window at the ring, as shown in Fig. 7(a).
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The sample is then postbaked at 120 ° for 15 minutes after developing.

The sample is again loaded in the evaporator to coat it with a thin AL

layer, as shown in Fig. 7(d). The unwanted At layer can be lifted off by

immersing the sample into heated and stirred acetone. It takes about 40

minutes to lift the At layer. The final structure of the At Schottky barrier

dot is shown in Fig. 7(e).
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(c) AuGe-N iohmic contact

(d)

Figure 7. Process used to fabricate aluminum Schottky barrier diodes.
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2.2 Impurity Incorporation and Redistribution During Epitaxial Growth

by H. Rohdin and H. Muller

2.2.1 Introduction

The incorporation of impurities in epitaxial layers and their subsequent

redistribution can lead to impurity and carrier density profiles that may be

unfavorable for certain applications. C. M. Wolfe and K. H. Nichols developed

a model, the impurity gradient model (IGM) 11,2], which explains qualitatively

some observed features, such as the occurrence of different conductivity regions

+at the n-n layer-substrate interface. It also explains why the observed

donor-acceptor compensation is less than expected [2].

In the model the redistribution of impurities is caused by concentration

gradient diffusion, and by drift due to a built-in electric field. The sources

of the field are charged surface states and impurity concentration gradients.

We thus have two coupled problems: The field problem and the redistribution

problem. Another feature is the moving boundary i.e., the growth surface is

moving with the growth velocity.

The IGM, as developed by Wolfe and Nichols is based on a number of assump-

tions. Most of these are realistic while others are adopted to make an analy-

tic solution possible. The Wolfe-Nichols treatment (W&N treatment) gives a

good qualitative picture, but to get more realistic results we must renounce

some of the assumptions made. This will complicate the treatment, and numerical

methods must be invoked.

In this report the Wolfe-Nichols assumption and their consequences will

be listed and discussed. Then the changes necessary for a more realistic treat-

ment will be presented. The problem will be defined and an approach to the

- . ... lI.ii m , . . & -, - i - ' ' - . . . '
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solution given. The problem will be treated as two semi-distinct ones: the

field problem and the redistribution problem, the first being the more

challenging.

2.2.2 Assumptions

2.2.2.1 W & N Treatment. List of Assumptions, Their Consequences and Validity

1. The evolution in time of the electric field, which depends on the growth

velocity and impurity redistribution is so slow that an electrostatic approach

is appropriate. We can thus get the field from Poisson's equation. This assump-

tion is realistic, considering the slow growth rate and low diffusion constant

of most impurities.

2. The edges of the relatively thin epitaxial layer do not contribute to the

general picture. Thus a one dimensional approach is possible. This is realis-

tic since the lateral dimension of the epitaxial layer is much larger than the

thickness.

Assumption 1 and 2 imply that the governing equation for the electric field E is

(x W --I (p(x)-n(x)+D(x)) (1)

where D is the net charge associated with the impurities

D N -n 1(2)
i,j j

3. The material is non-degenerate and the electrons and holes are in thermal

equilibrium. This results in the following:

i. A simple mass action law for creation and recombination of an electron-hole

pair

np = n (3)

I
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ii. A simple Einstein relation between mobility u and diffusion constant D

of electrons and holes

-D kT (4)
Dx  i x ' ;q ,n~

iii. A relation between electric field E and electron concentration to ensure

equal and opposite drift and diffusion currents for electrons (and holes).

kT d kT 1 dn
E ! L n n (5)

q dx q n dx

Many materials are nondegenerate, especially at the high temperatures during

growth. The growth velocity v is in practice far too small to disturb the

electron and hole equilibrium. Furthermore the diffusion constants of the

impurities are much lower than those of electrons and holes so that the latter

easily keep up with the redistribution of the former. The assumption is thus

a good one.

4. The epitaxial layer doping is below the intrinsic concentration. The sub-

strate is initially extrinsic (n-type) with constant doping. The redistribu-

tion in the epitaxial layer during growth is not large enough to affect the

field. There is no drift or diffusion between the epitaxial layer and the

substrate. The specific doping condition could well be changed but the essence

is that there is no coupling between field and impurity redistribution. This

is only realistic if we have very small redistribution of impurities, i.e., if

the impurity diffusion constants are sufficiently small.

5. The epitaxial layer is essentailly semi-infinite, that is to say, much

larger than the Debye length. This enables us to look at the field in the

epitaxial layer as a sum of two fields E and E, where E. originates from

the surface states on the growing surface and Ei from the discontinuity
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(according to assumption 4) in doping at the layer-substrate interface. This

is a good assumption once the growth has been going on for a long enough

period, but in the initial stages of growth it is not correct.

6. The substrate is essentially semi-infinite. This gives the necessary value

for Ei at the interface. This is a good assumption in most practical cases.

7. The electron concentration at the growth surface is fixed by surface

states. This means that the Fermi level is pinned at the surface. This gives

a value for E at the growth surface. This is a realistic assumption; pinnings

of the Fermi level has been observed. It would also be reasonable to assume

that E at the growth surface is fixed by the surface states in accordance

with Gauss law in electrostatics, i.e.

E(O) - _s (6)

where a is the surface chargi density associated with the surface states.s

In terms of electron concentration this is according to (5)

dn 0 - n((7)
x ) kT

This would contain the assumption that the surface charge density is essen-

tially independent of the doping at the surface and thus independent of the

Fermi level at the surface. Depending on how the surface state density depends

on energy this may be true or false.

8. No temperature gradients are present, thus no thermal currents. This is

a realistic assumption.

9. We study only shallow (hydrogenic) impurities which each only occupy one

type of lattice site of constant concentration. This means
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i. Only simple diffusion, i.e., no generation of recombination term in the

continuity equation for the impurities;

ii. All impurities are singly ionized.

The doping is therefore

D - * ±Nk (8a)

k

the flow of impurity k, Jk' is

o ±kkNkE - Dk-k x  (8b)k a

(upper sign donor; lower acceptor) and the continuity equation for impurity k is

SNk aiJk'-- - k-"£ (8c)
at ax(8

This is, of course, not always the case (e.g. Cr) but it is undoubtedly a

technologically interesting case.

10. The impurities are in equilibrium with the electric field. This means

that the time derivative of the impurity concentration in the continuity equa-

tion are all zero and an analytical expression for the concentration can be

found [1,2]. This is a very unrealistic assumption for the slow moving im-

purities studied.

11. The impurity concentration profiles are calculated during growth. During

and after cool-down further redistribution may have occurred. This is a dif-

ferent problem including fixed boundary and cool-down. It is not treated here

and we therefore effectively assume that the distributions are frozen in.

12. We study only homoepitaxial growth. We can then easily define an electro-

static potential and we get no surface charge at the layer substract interface.

i
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13. The numerical factor B in the Einstein relation

kTD-~ ~~B (d)

between impurity diffusion constant D and mobility 4 is 1. According to [6]

pp. 92-99 this is only true for a simple interstitial mechanism. The simple

impurity diffusion that we study is thought to occur through a vacancy mech-

anism. In this case B - 1.27.

2.2.2.2 New Treatment

In the new treatment we want to take a more general viewpoint. This means

that we have to do without some of the assumptions discussed above.

The most unrealistic of those is no. 10. We now want to study the case

when the impurities are not in equilibrium with the field. This is actually

the case for the kind of impurities we are studying which are very slow moving

(D<10- 1 4 cm2 Is at T - 750*C). We also want to allow redistribution in the

substrate and across the layer-substrate interface. We thus would like to re-

linquish assumption no. 4. We will have coupling between redistribution and

field. This will complicate the field calculation considerably. It is not

yet clear to us whether the most general field calculation is feasible numeri-

cally. Poisson's equation will be nonlinear, with a forcing term, the latter

being the net doping, and this is a somewhat difficult problem, even numerically.

We will try to overcome the difficulties, but if this is not possible,we can,

in view of the low mobilities of the impurities, use a modified W & N approach,

i.e. we could calculate the field once and for all with the non-redistributed

doping profile. We would, however, not treat the epitaxial layer as infinite

in the initial stage of growth. (Assumption 5 in W & N treatment). In either

case we will attempt to use the assumption that the field rather than the po-
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tential at the growth surface is fixed by surface states (assumption 7 above).

Assumption 6 above will make it possible to use the boundary condition

EM - 0 and/or n(-) = n (9)

where n5 is the equilibrium electron concentration fulfilling charge neutrality

deep in the substrate, i.e.

2

n - --- D =0 (10)s n s
s

of moig ondrwbhptineheoign tthDrot.where D is the net doping deep in the substrate. It will also enable us to

avoid the problem of the moving boundary by putting the origin at the growth

surface. Now the other boundary will be moving, but as this is at infinity

it does not complicate things. We will keep the temperature constant in time

(as * Ii as in space).

In summary: We will use assumption 1-3, 6-9, 11 and 12. 7 will be

modified in the sense that we keep E(0) fixed. 8 will also include no time

variations in the temperature. We will allow B in assumption 13 to take an

appropriate value. The other approximations of W & N will be relinquished

in the new treatment.

2.2.3 The Problem

The problem as mentioned, is a coupled one. The redistribution of im-

purities depends on the field and the field depends on the distribution of

impurities. Only under certain restrictions can the field be calculated

separately from the redistribution. The general approach will be to calcu-

late the field and with this field to calculate the redistribution during

the next time interval, then calculate the new field etc. First the field

problem will be treated and then the redistribution.
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2.2.3.1 The Electric Field Problem

If possible, an exact solution will be attempted. In adopting this

approach we have encountered several numerical problems and therefore a

simpler approach may be necessary. Both will be presented here.

Let us introduce the following quantities to get equations containing

only dimensionless quantities:

;-rn -j ; 6 - D (11)

ni j ni n0

where ni is the intrinsic electron concentration. Furthermore

/x/LD ;D - E (12)i Li jqn i

LD is the intrinsic Debye length.

e-E/Eo; kT (13)-e 
0 0 qLD i

(5), (11), (12), (13) give

d 1 dv

e - In v - 7& (14)

(1), (3), (11), (12), (13) give

de 1 + (-.d - 6 (15)

(14), (15) give

Id 2 1
-- n v v - - (16)
2

or

• 2v 1 (dj 2  2
Sd2  1 +2 -V- 1 (17)

2 v d&
Md
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(9), (11), (12) give

e(-) - 0; V() - (18)

(10), (11) give

6 6 2
V~ . Us .- A+ s+ 1 (19)

(6), (13) give

e(O) - e (20)
eE0 0

or with (14)

dv (0) - - eoV(O) (21)

If we deal with homoepitaxy we can define a continuous electrostatic potential

which we can set to zero at x = w, i.e. deep in the substrate:

E (x) - (E ) s  -qp(x) (22)

Ei is the intrinsic Fermi level. Define a normalized potential

- (23)kT

The normalized electron concentration can be written

V() = v e ( )  (24)

since we have non-degenerate material. Define

u(&) in v(O) u + (€) (25)
s
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(14), (25) give

- dO (26)
d

(15), (25) give

d - 2 sinh(u + O()) + () (27)

(26) and (27) are a set of two coupled first order ordinary nonlinear differen-

tial equations. They can, of course, also be written as a second order ordinary

nonlinear differential equation

- 2 sinh(u + O(W)) - 6 (28)
d&2

with boundary condition

- 0 (29)

(0) - -eo  (30)d&

2.2.3.1.1 The Exact Approach

The electric field can be calculated either from the electron concentra-

tion through (14) or from the potential through (26). If the first method is

chosen, the pertinent differential equation is (17) and the boundary conditions

are (19) and (21). If one uses the potential the governing equation is (28)

and the boundary conditions are (29) and (30). (17) and (28) are connected

by (24).

In both cases we have a non-homogeneous non-linear differential equation

with two boundary conditions, one being at the growth surface and the other

at infinity or rather deep in the substrate. Both equations have a rather
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arbitrary forcing term which contains the doping. Only when the doping

is uniform is it relatively easy to solve the problem. One then chooses to

solve (28). We have tried to solve both (17) and (28) numerically, so far

without complete success. We have tried the following methods:

1. Treat the problem as an initial value problem, i.e., make two coupled

ordinary differential equations of (17) or (28) respectively. In the latter

case one possibility is the system (26), (27). To be able to solve this we

need to know the initial value of both the function itself and its derivative.

But we only know one of these, or the ratio between them. The other boundary

condition that we know is at infinity. We thus have to adopt some kind of

"aiming" method, i.e. pick a pair of initial values in such a way as to ful-

fill the boundary condition at infinity (or in practice at a point sufficiently

far in the substrate). This involves iteration and is time consuming. Further-

more both (17) and (28) are ill-conditioned for prescribed initial value and

initial derivative. To illustrate the difficulty, consider the equation

y; y(O) y YO'(a) 0 (31)dx 2

In this example an analytical solution is easily found, namely

y -Ae + A e-X (32)

With this potential, one would for the physical reasons y(-) - 0 have picked <

A1 - 0. Unfortunately the computer has no capability for physical reasoning,

so the term Alex would appear in the numerical solution if we had chosen to

solve (31) as an initial value problem

:!i
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dy1

dx Y2

dy2  (33)
"- =Yl

with initial value for yl y known to be

yl(o) - YO

but the initial value for y2  unknown. A solution based on pickingbut he nitil vlue or 2 "dx

dZ (0) to satisfy y(-) - 0 seems impossible in practice. For our problem this
dx

is even more true since the right hand sides of (17) and (28) are mueh more

sensitive to the unknown variable than is the right hand side of (31).

2. Use a combination of finite difference approximation and iteration [3],

i.e. we have the nonlinear ordinary second order differential equation

y" - f(x,y,y'); a<x<b; (34)

and we intend to make better and better approximation y(n) of y. The finite

difference approximation to (34) is

_ 2n+l) + l
Yi-i 2 (1 + Y i+I (nii) (l)(n+l) .(2.. 'i' i( " ahY 2 ;i y ii , ; -1' , 2 , ,. . m a ( 3 5 )

where subscript i indicates the value at mesh point i

- a

mx b (36)
ma x
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and h is the distance between subsequent mesh points

x -x x h all i
i+1 i

x - XI  h(imaX-l)
max

Furthermore

(Y' - Yi- (37a)

is the finite difference approximation of y'. We cannot use the (n+l)th approxi-

mation on the right hand side of (35) since that is the one we are seeking. We

thus have to approximate. Define

fn f n W) n (38)
ni - i Y

and , ( ) analogously. Then an approximation to (35) is

y (n+l) 1 + a (n) + y (n+l) ~ 2-h 2( (n) +

1- 2 3 i i3

(~ 2 \ay' /

h ay 1-1i ; ~,2,...1 (39)
Y i i aY/y max

It is easy to incorporate boundary values into this scheme. If one boundary

is at infinity one picks xi large enough so that the boundary condition is

effectively fulfilled there. Unfortunately this does not seem to converge to

a steady value for yi for either of (17) and (28). For (28), not only is there

no convergence, but the result is unstable.
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We are still trying to find a way to solve (17) and/or (28), without

simplification. If this is unsuccessful, we have to adopt a simpler approach

which is a modification of the W & N treatment.

2.2.3.1.2 Modified W & N Approach

We will here assume that we can calculate the field as if there were no

redistribution. This is probably a fairly good assumption with the low diffu-

sion constants of the impurities under study. The epitaxial layer will then

approximately have the intended doping concentration which we assume is a con-

stant D . We also assume that the substrate doping is a constant, D . In

regions where 6 is constant and1 # 0 (28) can, after multiplying both sides

with ,be written

2( d / - 4cosh(us+4)-260.c (40)

where c is an integration constant specific for each region. The potential * is
still set to zero deep in the material i.e. in the substrate. (40) yields:

,± do' (41)
0 A4cosh(u +$)-260'+c

The plus or minus sign is chosen from physical reasoning. It may reverse within

a region at a point where - 0. The boundary condition (30) gtves

2 = 4cosh(u +0 )-26e*O+c (42)ee
0 sO0 e e

where 0 is unknown in our treatment while 0 is known. (Subscript e for

epitaxial layer). The boundary condition (29) yields

c -4coshu (43)
* S

--
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Continuity of the field and potential at the interface (assumption 12) gives

with the aid of (40)

c = cs+2e (6-6) (44)e a es e 8

where es is the potential at the interface. (42) - (44) provide a relation

for *

e2-4cosh " )+4coShus+26
0 coh 0 s e 0 (45)

es 2(6 e - 6s )

(41) gives for the width te of the epitaxial layer (if there is no sign

reversal in (41))

.e . es (00 d ' (46)0 Y4cos h Us + ' )-4coshu s-26 e' 1+2 (6 e - 6 s ) Oes ( 0

We can indirectly determine *0 as a function of te from (46). Then we can

determine ce as a function of te by (45), (43), (44). With (41) we can then

determine * indirectly as a function of & for a specific t in both the epi-e

taxial layer and in the substrate

2.2.3.2 The Impurity Redistribution Problem

This is an easier problem than the field calculation since it is linear

once the field is known. The flow Jk of impurity type k in a field and con-

centration gradient is (assumption 9)

J N E-D - (8b)k k k k ax

with (8d), (11), (12), (13)

- 1 en (47)k L k k 3&

Di a
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Define, k - (48)

then

J Jk ±Bken k -k (49)

The continuity equation for impurity k is (assumption 9)

-- k - _ (8c)

at ax

As mentioned in section 2.2.2.2 we can with assumption 6 avoid the moving

boundary by setting the origin of the x-axis at the growth surface. Now the

other boundary will be moving but this boundary is at infinity and not a

specified distance from the growing layer or the interface. If we pick a

region of a given length before growth, such that one boundary is the growth

surface (initially the interface) and the other at a distance deep in the sub-

strate (so deep that it is effectively at infinity), we can grow until the

"equivalent infinity boundary" no longer can be said to be deep in the substrate.

We thus study a fixed boundary problem for the allowed period of growth.

When we change the coordinate, Jk must be replaced by Jk+Nkv where v is the

growth velocity, With this and (8c), (47) we get

Ink Dk Di an k
L BkT (enk)  k (50)

We normalize the diffusion constants Dk to a typical diffusion constant Dot

typical for the studied temperatures and class of impurities:

D =dD (51)

k k0

I
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With our class of impurities D could be picked to be 10-15 cm2-1 for

T - 750C (see [4] p. 418). We define a normalized time T, normalized to

2
L /D0

2

t D o (52)

We also introduce a normalized growth velocity u, normalized to D01Di

v = u-D0 /L (53)

(50)-(53) yield the normalized transport equation for impurity species k.

2nk  2_rk ___

If e(9,r) is known, this is a linear partial differential equation for

nk = nk( ,T). It is a boundary value problem in :

nk(0,T) - nek(T) all T (55)

nk(-,T) - nsk all T (56)

and an initial value problem in T:

nk(&'O) = rsk > ' 0 (57)

2.2.3.2.1 Numerical Approach to the Redistribution Problem

In fact, (54) is not a linear equation since e(E,r) depends on all nk'S.

Our approach will be to calculate e with the present distribution, i.e. at

time T, of nik's accordin& to the previous section. Then we will calculate nk at

time r + AT where AT is a small time interval, assuming that e remains con-
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stant during this time interval. The smaller Ar, the better this approximation is

We then calculate e with the new impurity distribution, etc. We cannot numeri-

cally take the entire C-interval (0,-) into account, but we have to cut it off

at some distance C - L such that there is virtually no field or redistribution

for > L.

We have already divided the time scale into discrete times (J-I)Ar,

j - ,2,3 ...jmax. We will also divide the studied a-region (0,L) into discrete

intervals (i-l)A&,i - 1,2,3...i where A& is a small distance. These dis-max

crete values in time and position will generate a net, and we will seek the

value of nk at each mesh point. This involves approximating (54) by its

finite difference approximation (FDA) in terms of the values of k at the mesh

points.

J+l

wo

i-m i i+l ia-i

mIa.
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This can either be done explicitly or implicitly [5]. The latter technique is

the most stable, since it takes into account the values of nk at the next time

interval which is what one wishes to calculate. To calculate the nk ' at the

(J+l)th time we now write the following implicit FDA for (54) at i - 2,3,...i max-1

(where nk(iT ) - nk(i,j) etc.):

AT=") d k (kAO + 2 2 k2

1 1
e(i+lj)nk(i+lj+ 1 1-e(i-l,j)nk(i-lj+
-B--d ' ' i (54a)

1 1u nk(i+lj+ :)-nk(i - l J + -)-uQj+ 1 2 k>

with

n k (1 ,J) - nek(j) all j (55a)

nk(imax'J) , T% k all j (56a)

and

r (i,l) nsk i > 1 (57a)

aTk
The left hand side of (54a) is exactly equal to a ( iTj+6Tj) for some

(unknown) value of ST ranging from 0 to AT. We have therefore placed the

FDA of the right hand side of (54) at themidpoint between the jth and the

(J+l)th time. This is what makes the scheme implicit.

We have to solve the matrix equation

-. .I
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b -c0k..n 2 , j+1)d

-a b -c ri(3, J+1) d3
3 3 k 3

-a b -c . .:k J

fL 0..... -a ma -1 b J L k(i max1, J-i-) Ld.i ma-1I where
b -- 4 1

dkAr (W )2

2 ± B 4(i-1,i) +_1_3,_
2 k 44 4 dkA& max** -

1 c~j u(j±~ -.. i -

2( * Bk 4AE -dA ,.1-

2(A&)max

di in (illi+ TIk (~j)c nki~lJ); 1 ,4, .i M -2 (59)

2 2 a k( i) nk i a - , ) 1rk ' a - , ) 2 c

m a i -1Fk fl(mx~+..- 1k'axj

max max AT 0axma -

This is easily done by Gauss's elimination ([5] pp. 20). By making t

sufficiently small we can make the first term dominant in a~ and ci. The

problem then reduces to the simple Crank-Nicholson scheme considered

dkr
by (5] pp. 60-65. This means that our scheme is stable for all -

(W)
for sufficiently small A&.
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2.2.3.3 How to Chose Ax, At. imax and Jmax

A field falls off to zero essentially within a few appropriate Debye

lengths. This means that we have to pick Ax to be a rather small fraction of

the smallest appropriate Debye length. The time interval AT should fulfill

IJIAt << N Ax everywhere (60)

so as to make the relative change of impurity concentration everywhere small

during each time interval. The flow J is either drift, diffusion, or trans-

lation flow. The last arises from the motion of coordinates with the growth

surface.

JJ (drift)l = iNE

IJ (diff)I - D AN (61)Ax

IJ (transl)j = Nv

jmax is determined by At and the total time we want to grow, t .

gg
t g (j a-1)At (62)

The length of the total studied region is

L - (ia-l)Ax = L +L (63)
max e s

where Le is the thickness of the epitaxial layer determined by t and v(t) and

L is the depth of substrate that we consider at time t.
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layer-
growth substrate
surface interface

Ix

0L eL +L a

!!At t t tg L s must be large enough so that at x =L the properties of the

: substrate are essentially those at infinity. This means zhat the field has

j to be zero there and that there is no redistribution due to diffusion either.

The fields fall off to zero within a few substrate Debye lengths s so Lsa

Ii

must fulfill, say,

Ls > 4- Ls

s Ds

If so at x - L we have pure diffusion. This diffusion is approximately equal

to what the diffusion would have dethat th e sutne and epitaxial layerL >4.L
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had been semi-infinite. In this case for the change in impurity concentra-

tion to be negligible, say 0.1 - 1% of the maximum value of the impurity

concentration, L has to fulfill
s

L > 4Z"t (64)
s- g

So finally Ls must fulfill

L> max {4 LD 4N/5- } (65)Ls LD s g9

this puts a lower limit on imax . Finally we may want to choose D so that we

get T expressed in some convenient unit like minutes or hours.

2.2.4 Final Remarks

We have discussed a number of aspects of the problem of field assisted

redistribution of impurities during epitaxial growth. The redistribution

part is completely outlined while the field problem needs more study. The

amount of research effort and computer time that should be devoted to this

problem depends in part on the impurities to be considered. For relatively

immobile shallow dopants the simpler modified W & N approach should be adequate.

If we also wish to study such problems as Cr redistribution in GaAs, a more

accurate approach is needed. Since Cr is the most widely used dopant in

semi-insulating GaAs, it is of particular interest to us.

Computing is in progress and we hope that before long we will have some

interesting results.

im
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2.3 Diffusion and Electronic Properties of Cr in GaAs

by H. Rohdin and M. Muller

2.3.1. Introduction

In the course of the work on field assisted redistribution of impurities

during epitaxial growth, treated elsewhere in this report, we encountered

several interesting redistribution properties of Cr in GaAs.

Cr in GaAs is a very interesting system technologically. Cr has the

ability to produce semi-insulating (SI) GaAs and thus to compensate the

residual donors in bulk grown GaAs. The semi-insulating properties seem

remarkably independent of the amount of Cr added during the growth process.

During high temperature treatment, such as post-implantation anneal, pre-

epitaxial growth anneal and the epitaxial growth itself, redistribution of

Cr occurs, which may degrade the wished-for electronic properties. It is

therefore important to understand the causes of the redistribution of Cr in

GaAs.

In the hope of being able to incorporate Cr transport into our model

we started to investigate the properties of this system. So far the inves-

tigation has essentially been based on a rather extensive literature search

in various fields, the most interesting being redistribution properties of

Cr ions in GaAs, electronic properties of GaAs:Cr, optical properties of

GaAs:Cr, and magnetic properties of the different Cr ions in GaAs. We soon

realized that the problem was not an easy one. A lot of seemingly con-

tradictory features are puzzling.
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We have tried to develop a model that is consistent with most data in the

different fields. So far it is tentative and experiments have to be per-

formed to test it. We plan to do this in the near future. Here we will

present the work done to date.

We will start by presenting some results from experiments performed on

GaAs doped with Cr. We will point out the interesting features and the

often encountered feeling of variability and contradictions in the results.

We will take a brief look at Zn transport in GaAs. This is probably the

most extensively studied case of acceptor diffusion in GaAs, and it can

serve as a basis for discussion of Cr diffusion in GaAs. Then follows a

survey of the well-established electronic behavior of Cr in GaAs inferred

from electric measurements, EPR data and photoluminescence and photoconduc-

tivity data. Then comes a crucial section were we try to motivate the

existence of interstitial Cr acting as a donor. This is not a new idea, but

it never seems to have gained credibility since its suggestion by Broom

[1] in 1967. A discussion in general terms about energies associated with

different sites and charge states of Cr in GaAs, and on the corresponding

one-electron energies will follow and serve as an introduction to an explicit

motivation for auto-compensation of Cr in GaAs. Vacancies play an important

role in the model and a short treatment of the pertinent vacancy chemistry

and resulting concentration profiles will be given. A short sketch of the

possibility of superfast diffusion will precede the presentation of our

tentative model for Cr in GaAs. Finally we will apply the model to explain

some of the experimental results in section 2.3.2 together with the explana-

tions given by the different authors.
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2.3.2. Certain Experimental Results on GaAs:Cr

2.3.2.1 Redistribution of Cr in GaAs

2.3.2.1.1 Annealing of Cr without encapsulation

Kasahara and Watanabe [2] and Tuck et al. [3] reported on Cr distribu-

tion in GaAs after annealing of Cr doped GaAs with encapsulation. Graphs

taken from the two papers are shown in fig. 1 and 2 respectively.

[2] observed that for zero As pressure and an annealing time of one hour

there was no outdiffusion for temperatures below 700*C. For temperatures

above 800C there was outdiffusion and the Cr concentration decreased

gradually approaching the surface where it tended to zero.

For As-pressure larger than zero, when [2] annealed at a temperature of

850C for one hour, the surface concentration no longer tended to zero. The

amount of outdiffused Cr decreased.

[3] reported that one-hour annealing at 750*C resulted in a uniform

lowering of the bulk Cr concentration. A high peak developed at the surface.

For higher As pressure there was less lowering of the bulk concentration, a

higher surface peak and all together less total outdiffusion.

There are three interesting things to note when comparing the results in

[2] and [3]:

1) For higher As pressure the total outdiffusion was lowered. In [3] the

Cr concentration in the entire crystal was affected. In [2] just the

surface region was affected.

2) For essentially the same annealing temperature and time [21 and [3]

got completely different profiles.

3) In the GaAs:Cr that [2] used, the Cr was incorporated during bulk growth,

while in [3] the Cr had been indiffused in the form of 51Cr.
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Fig. 1. Redistributed Cr profiles after annealing at Fig. 2. Chromium profil0 after annealing at 850-C
temperatures ranging from 700L-900*C for 60 min for 15-120 mii under Pu,=O Tor. Broken lines
under PAuhI-O Torr. Broken lines show the and solid liras are experimental and calculated
experimental results except the cane of 800CC where ProfliCS respectiv'ely.

the experimental data are shown by the dots.
Calculated profiles from eq. (1) in the text are shown
by the solid lines.
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1Igurg 4. 'Drive-out'diffusion profiles for~one-hour 750*C reanneals A. in an epi-
taia reo and B. in an evacuated

________ampoule____(see___ ext).

Penotrotion (pmr)

Fig. 2. Cr profile in GaAs after annealing without
encapsulation taken from [3]
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2.3.2.1.2 Annealing of GaAs:Cr with encapsulation

Favennec and L'Haridon [4], Huber et al. [5] and Asbeck et al. [6]

all studied annealing of GaAs:Cr with a Si3N 4 encapsulation. Graphs from

these papers of Cr distribution after anneal are shown below in fig. 3-5.

They all observed a very thin Cr peak at the substrate-encapsulant

interface and a thicker Cr depletion zone below the interface. Note that

the depletion and the extrapolation of this, i.e. the Cr concentration minus

the surface build-up, is considered to be the "real" diffusion profile, to

which an erfc-function can be fitted. When the redistribution is so large

that electrical conversion occurs the substrate is considered "unqualified".

In fig. 5 the upper curve is probably from an unqualified substrate while

the other two probably are from qualified ones.

2.3.2.1.3 Diffusion of Cr into SI-GaAs:Cr

This was also studied by Tuck et al. [3]. Fig. 6 is taken from this

paper.

There was an exceedingly rapid penetration of Cr through GaAs at temper-

atures between 800 and 1100°C. The profiles did not show a simple erfc-

form. Instead there was a rapid fall-off at the surface while in the bulk

the Cr concentration was essentially constant. Note that this was the way

the substrates used in the outdiffusion experiments treated in 2.3.2.1.1

were prepared. The surface region was removed before outdiffusion.

2.3.2.1.4 Epitaxial growth of GaAs on GaAs:Cr

Tuck et al. [3] and Wilson at al. [7] both performed epitaxial growth

of GaAs on Cr-doped GaAs. In [31 VPE growth at 750°C of undoped and S-doped

epitaxial layers were performed on substrates doped with Cr during bulk growth
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Fig. 6. Cr profiles in GaAs after indiffusion
of Cr taken from [3]
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and by indiffusion of Cr radiotracer as described in 2.3.2.1.3. The result

is shown in figure 7.

In [71 undoped layers of GaAs were grown by LPE at 800*C on SI-GaAs:Cr

were the Cr was incorporated during bulk growth. The result is shown in the

figure 8.

[3] observed large outdiffusion and noted that S-doping inhibited

outdiffusion. [7] observed less outdiffusion and an erfc-function could

be fitted to the Cr profile.

Note that in [3] the outdiffusion was larger than in [7]. Note also

the difference in incorporation of the observed Cr ions.

2.3.2.2 Electronic Properties of Cr in GaAs

2.3.2.2.1 Bulk grown GaAs:Cr

Cronin and Haisty [8] were the first to report on the electronic pro-

perties of GaAs doped by Cr during bulk growth. They observed that if one

adds a sufficient amount of Cr to the melt the resulting GaAs is semi-

insulating. This is so even when the added Cr amount is much larger than

the residual donor concentration. The table in fig. 9, taken from [8],

illustrates this.

Determination of the conductivity type of the crystals by Hall

measurements and thermal probe did not always yield the same answer.

According to Dr. C.M. Wolfe the thermal probe technique probably was the

most reliable. If so, the type can be either p or n. This agrees with the

observations of Zucca [9] who also noted that excess Cr still produced

semi-insulating GaAs.

Brozel et al. [10] observed in their experiments that a larger Si con-

centration during bulk growth resulted in a larger Cr concentration. They



2-52

A

EpilayarSubstrate
O 11gw. 5. Out-diffusion during spitaxy-of

EpLae ___________ A. undoped and B. S-doped layers.
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Fig. 7. Taken from [31

Ce IMIPLANT

1044
.104 GAS BULK G.aMC,

~~INN
a 1.0 2.0 U. .. 0 1.0 s0

DEPT". MR

FIG. 3. SIMS depth distnbation of 2Cr in an undoped epitaxial layer of
GaAs grown on a Oa46s(Cr) substrate and implanted with 32Cr. Prwoled
through the epitzia layer and into the bulk Oa~s(Cr).

Fig. 8. Taken from [7]

Fig. 7,8. Cr profiles in GaAs substrate and epilayer
after outdiffusion into the latter
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also concluded that Cr is a double acceptor in GaAs. This is the commonly

accepted picture of the electronic action of Cr in GaAs. Note that the

common observation is that the concentration of compensating Cr is adjusted

to the concentration of the residual donor to be compensated. [10] also

observed a geometrical adjustment.

2.3.2.2.2 Cr indiffused into GaAs

Tuck et al. [3] performed Hall measurements on GaAs samples into which

radioactive Cr had been indiffused. Their result: If the sample initially

was SI-GaAs:Cr it became p-type (p=6xl14 cm - 3) after indiffusion. If the

sample initially was n-GaAs:Te it became high resistive (n or p<1014 cm - 3) in

a region below the surface while beyond this the sample remained n-type.

2.3.2.2.3 SI-GaAs:Cr annealed under encapsulation

Asbeck et al. [6] observe a spurious n-type layer just below the

GaAs-Si3N4 interface as illustrated by figure 10 taken from [6].

In addition, Favennec and L'Haridon [4], Huber et al. [5] and Asbeck

et al. [6] all reported a thicker n-conducting layer below the interface for

non-qualified SI-GaAs:Cr substrates corresponding to the Cr depletion region

discussed earlier. For some substrates [4] got p-conversion. The three

cases observed by [4] are illustrated in fig. 11 below.

2.2.4 Epitaxial growth of GaAs on SI-GaAs:Cr

In K.H. Nichols' doctoral dissertation [11] fig. 12, based on the

results of Yamasaki et al. (12], appears. It shows an interfacial region

with higher electron concentration than expected. Essentially the same

phenomenon was reported by Khokhlov et al. (13]. They grew nondoped VPE

layers on SI-GaAS:Cr. Fig. 13 is taken from their paper.

V_-A-am=
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Ta ble1. Properties of chromium.daped GaAs at 300K - -

Cr Br' Br'analysis no R Hall hat r
(ppa (cm/ (a:z c¢efti null

crystal by wt) coulomb) v-see) (oh -mi €oent probe

3-37 0.2-0.3 1.2 X 101t 1130 1.06 X 10' n p
3-41 0.4 2.8 X 10 2120 1.34 X 10-' n n
3-42 0.2-0.5 8.8 X 1016 256 3.43 X 100 n p
3-44 0.4 3.5 X 1011 630 5.61 X 104 n p
3-45 0.4-0.5 3.0 X 10' - 3.30 X 104 n n

4.0 x 1011
555-215 1.8 3.2 X 1011 1120 2.84 X 10' n p
555-216 3.5 2.9 X 101 693 4.17 X 10' n p

3-50 360-400 1.3 X 1010 614 2.15 x 10' n p

* Crystal 3-45 Inbomogeneo ua. Two values for Hall coeMient afe
measurements at each end of sample.

Fig. 9. Electrical data of GaAs doped with Cr
during bulk growth taken from [8]
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';Fig. 3. Comparison of carrier density profiles in unimplanted, annealed
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Fig. 10. Electron concentration profiles in GaAs:Cr after Iannealing with encapsulation taken from [61
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A1

44

FIG. 2. Surface carrier concentration (hole > 0. electron < 0) versus the
dose (0 > 0 if Zn. < 0 if Se) for A. B. and C substrates.

Fig. 11. Surface carrier concentration in GaAs :Cr
substrates after implantation and annealing

A- qualified substrates (no conversion)
B - unqualified substrates (n-conversion)
C- unqualified substrates (p-conversion)
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Fig. 12. Carrier concentration versus epitaxial layer
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grown on a Cr-doped substrate with an
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Fig. 13. Taken from 113]. Non doped VPE layers on SI-GaAs:Cr substrates

Fig. 12, 13. Electron concentration profiles in epitaxial layers
grown on SI-GaAs:Cr substrates
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Both (12] and [13] got an increase of the electron concentration in

the layer close to the layer-substrate interface. Fig. 13 shows a region of

lower electron concentration as well.

Schlachetzki and Salow [14] grew non doped LPE-layers at different

temperatures and from different source materials. For each source material

(I and II) they got n-type, p-type or semi-insulating layers depending on

the growth temperature. For temperatures close to a temperature To, specific

for each source material, they got SI-GaAs layers. For growth temperatures

larger than T0 they ot p-type layers and for growth temperatures below T0

they got n-type layers. Fig. 14 below is taken from (14].

Khokhlov et al. [13] also reported that for high temperatures the

carrier density in their VPE layers increased faster with temperature than

the intrinsic concentration. This is illustrated below in figure 15 taken

from [13].

2.3.3. Zn Diffusion in GaAs

Zn diffusion in GaAs is well explained by a substitutional-interstitial

diffusion model in which the Zn ions are distributed over both substitutional

and interstitial sites. More specifically, the assumptions associated with

this model are:

1) Zn can exist substitutionally, substituting for Ga (ZnGa), where it

acts as a shallow single acceptor.

2) Zn can also exist interstitially (Zni), acting as a shallow single

donor.

3) Ga vacancies (V Ga) are neutral and electrically inactive.

4) There is an equilibrium reaction in which Zn changes site:
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Zn+ +V + Zn +2h+
i Gaa 4ZGa+2h

with the mass action law

pl2[zn + [Zn a I(Yp) 2/K(T)P1/

where y is the hole activity, K(T) the equilibrium constant and PAs 2

the As-pressure.

5) The concentration of Zni is much smaller than that of ZnGa i e.

[Zn] << [ZnGa] [Zn]

These assumptions lead to an over-all diffusion constant (including

drift in the built in field) which is proportional to the square of the

ZnGa-concentration:

D(Zn) - [ZnGa]2

Non-equilibrium effects do contribute but the treatment gives excellent agree-

ment with experiment as long as the Zn concentration is not too high. Casey

wrote a review article [15] which emphasizes Zn diffusion in GaAs. Figure 16

is taken from this and shows the good agreement between theory and experi-

ment. Note the difference between these profiles and those obtained by Tuck

et al. [3] shown in section 2.3.2.1.3: Zn is absorbed by Ga-vacancies

a i -r _ i i . ,
,
.. - -. . - .I • - -- = - ,, .. '-'i- .. J. ,
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Figure 6.16. Comparison of Cunnelf and Gooch's lIt 2 experimental Zn diffusion
piordes in GaAs with Weisberg and Blanc's 173) calculated diffusion profiles with
D(Zn) d IZn6&I '.The arrows indicate the 'effective zero' for each theoretical curve.

Fig. 16. Taken from [15]
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in an equilibrium process which leads to a sharp cut off in the diffusion

profile while Cr show extremely high penetration leading essentially to

a uniform bulk concentration as well as a surface build up. This indicates

a completely different transport mechanism for Cr. In our model, however,

the Cr diffusion mechanism does have some similarities with Zn diffusion

as we will see.

2.3.4. Well Established Electronic Properties of Cr in GaAs

The free Cr-atom has the electronic configuration 3d54s. In GaAs,

Cr is considered to occupy Ga vacancies. This basically leads to a

tetrahedral symmetry for the Cr atoms. Cr contributes 3 electrons to

form bonds with the 4 surrounding As atoms. This leaves a Cr3+ core

which generally is supposed to be able to accept one or two electrons.

We thus have at least 3 charge states of Cr on Ga-sites:

Cr - neutral
, Cr2+

Cr - one electron accepted

Cr+  - two electrons accepted

In reality the first two states do not show tetrahedral symmetry.

Instead Cr3+ and Cr2+ are unstable to Jahn-Teller distortion as reported

by Krebs and Stauss [16], (17].

Figure 17, taken from [18], shows a phenomenological ionization

diagram including lattice relaxation for Cr in GaAs. Both acceptor

levels are deep. Figure 18 shows a more detailed scheme taken from

[19]. This is based on EPR data. We can see how the Jahn-Teller dis-

tortion of the Cr2+ center has lifted the orbital degeneracy of the

d-levels. From optical data Stocker and Schmidt [20] deduced the level

scheme shown in fig. 19.

,7
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+ Fig. 17. Taken from [18]

FIG. s Achaaicphem eaa gic lahizatiea diagrm for Cr inGaA,showing pombe eectr. transitious (vertical mows) and wquemg re-
batio relative to the bands due to latice complies (brken Unm). Upward
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the bands; downward transitions represent carrier capture. Cri - is regard-Cd#SadoubkaWWoriRG&"~ with Cr * NWICr+ representin$ rst and
second ionization states. respectively.
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i. ICr1 l GaAsas ed fom the ESRdab.
The splitting of the 5 E and sT2 states of Cr* is
expected because of a static, tetragonal Jaha-Telig,

F.. Fig. 19. Taken from [20

?ig .. Fnergy levels
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Details in these schemes may differ due to the different underlying

experiments but the overall picture of two deep acceptor levels emerges

clearly.

2.3.5. Cr as an Interstitial Donor in GaAs

As mentioned in the introduction, Broom proposed in 1967 [1], to explain

why he had

in his Cr doped GaAs samples, "an auto compensation mechanism in which part

of the total number of Cr atoms is either neutral, or possibly at inter-

stitial sites, acting as donors". The idea came from a paper by Allen (21]

concerning autocompensation by oxygen in GaAs. In the case of Cr the idea

has never seemed to get wide acceptance. We believe that Cr actually is

autocompensating. This seems, together with other ideas to be presented in

the following sections, to be able to account for many of the experimental

results assembled in section 2.3.2.

In addition to Broom's reason there are other indications of an inter-

stitial Cr-donor.

Deveaud and Favennec [22] observed a new PL-line in substrates that had

been Cr-implanted and annealed, and also in contaminated epitaxial layers,

i.e. layers into which Cr had outdiffused from the substrate. A very

interesting thing about the latter is that, although the region into

which Cr had outdiffused contained almost as much Cr as the substrate, it

was not semi-insulating. Furthermore the new PL line was much stronger

than those usually assigned to Cr. They suggested that Cr may be located

%~.1
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elsewhere. Overall their result is consistent with the existence of an

interstitial Cr-donor.

Schlachetzki and Salow [14] and Andr6 and LeDuc [23] got n-conductivity

in GaAs crystals grown from the liquid phase. (23] concluded that Cr forms

a shallow donor contrary to Cr-doped crystals grown from the melt.

A reason why Cr may find it favorable to exist in GaAs at a place

different from the substitutional site can be found in [19] where the

authors, Kaufmann and Schneider, say that to their knowledge Cr 3+has never

been observed in tetrahedral ligand coordination in any semiconductor.

Furthermore, they say, there exist no stable tetrahedral Cr3+ complexes.

Once a Cr3+ occupies a Ga-vacancy the instability of the tetrahedral
configuration seems, in the light of what is said in [16] and [17], to

Cesult in Jahn-Teller distortion.

For the sake of comparison we list some of the pertinent properties of

Cr together with those of two impurities, Zn and Cu, which do occupy both

substitutional and interstitial sites.

Cr Zn Cu

Electronic activity deep double shallow single double
in GaAs acceptor on acceptor on acceptor sub-

Ga-site Ga-site; shallow stitutionally;
single donor single donor
interstitially interstitially

Electronic configuration 3d 54s 3d 104s2  3d104s

Ionic radius for +1-ion (A) 0.81 0.88 0.96

First ionization energy 6.764 9.391 7.724
(eV)

Atomic number 24 30 29
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Apart from the fact that Cr is a transition metal, the properties of Cr do

not differ much from those of Zn and Cu. Most interesting is that the ionic

radius of Cr is the smallest of the three, which intuitively would make an

interstitial site favorable.

2.3.6. Site Energies and Cr Distribution Over Sites

If Cr can exist both substitutionally and interstitially, it is of

course of interest for both the electronic properties of GaAs:Cr and the

transport properties of Cr in GaAs to determine the Cr distribution among

sites.

In view of what has been said about the stability of the different Cr

ions we will try to motivate the principal and phenomenological site energy

scheme in figure 20.

Both Cr3+and Cr2+ are unstable to Jahn-Teller distortion, the former

being the least stable. The minimum energy position should therefore be

displaced from the Ga-site. Krebs and Stauss [16] suggest that Cr
3+

belongs to a class of centers which exhibits Jahn-Teller distortion with

large stabilization energies. If so, the barrier for Cr3+ against going

interstitial should be rather large. As, according to [19], Cr2+ is less

unstable than Cr 3+ , the corresponding barrier is expected be even larger for

Cr2+ . This should be even more true for Cr which is stable to Jahn-Teller

distortion.

For interstitial Cr the barrier is probably large as well. This is

indicated by the observation in [22] that Cr outdiffused into a growing

layer did not produce semi-insulating material i.e. did not in general go

into a substitutional site where it may act as an acceptor.

i
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The discussion of the site energy scheme is not intended to contain

any detailed information. The essence of it is to couvey our belief that

the barriers involved are substantial, leading, in general, to a nonequili-

brium distribution of Cr ions over the sites.

The redistribution among sites should depend on:

1) The temperature: the higher the temperature, the more easily the Cr

ions may overcome the barriers.

2) The doping: in more n-type material fewer Cr ions leave their substitu-

tional sites, since most of the Cr ions are in the more stable states

Cr 2+Cr2 or Cr+

3) The vacancy concentration: the larger the concentration of Ga

vacancies, the larger is the tendency of Cr ions to be substitutional.

Only for very high temperatures should it be easy for Cr ions to come

into equilibrium. At bulk growth from the melt it seems reasonable that the

Cr ions could be incorporated in their equilibrium distribution. If so,

the latter should coincide with the distribution necessary for a high degree

of compensation, since nearly perfect compensation is almost always observed

for sufficiently high concentration of Cr when incorporated during growth

from the melt ([l],[8],[9],[10]).

During epitaxial growth the situation is different. First of all,

the redistribution after incorporation into the lattice is inhibited by the

lower temperatures. Furthermore the incorporation into the lattice may

differ with growth temperature and vacancy concentration (which depends on

the temperature and the type of epitaxial growth).

In the case of indiffusion of Cr the situation again is different. As

.hen enters an already grown lattice it seems likely that the Cr to a

. .
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larger extent should remain interstitial compared to incorporation of Cr

during epitaxial growth.

2.3.7. One-electron Energies

Approximate values for the one-electron energies associated with

Cr 2 and Cr can be inferred from the level schemes in section 2.3.4. The
Ga Ga

level associated with Cr + should lie somewhat above the intrinsic Fermi
Ga

level while that associated with Cr a should lie close to it but below,

so that when the material is compensated (essentially intrinsic), most
2+

Cr are Cr a. The one-electron energy of Cr should be close to the
Ga Ga~ i

conduction band since the donor is thought to be shallow [14].

A phenomenological one-electron scheme is shown in figure 21. A

level associated with a shallow residual donor is included.

2.3.7.1 Occupation of the One-electron Energy Levels

If we proceed in a fashion similar to that in Seeger [251 p. 35-40

we can get the occupation of the different one-electron levels.

Notation:

g-statistical weighting factor

[x] - concentration of species x

subscript s on substitutional Cr

subscript i on interstitial Cr

[Crs]- [Cr ] + [Cr 2] + [Cr + ]  (1.)

[Cri] - [Cr0] + [Cr+] (2)
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8+
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Fig. 21. Phen~omenological one-electron scheme f or GaAs
containing Cr and a shallow donor (e.g. Si)
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[Cr I (e -EF)/kT -(e+-E)/kT
S+2 F +1+ g+e s f2 (EF) (3)

[ I(e +-)/kT (e 2+-EF)/kT (e +-7E)/kT
-C ] -1e s+1+ 1-e s - e

[Crs] g + g 2 + e
s s 9 +

s

f 1l ( F) (4)

[r0 (e 0 _E F)/kT -
t [Cri]

id e +1 (6)

For non-degenerate material:

:i(EF-E,)/kT(7
' n- fini e (7)

p -n2/n (8)

where E is the intrinsic Fermi level:

E 1 = (E+EC) +3 kT in mh (9)

e

The Fermi level is as usual determined in the bulk by the condition of

charge neutrality
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(Cr+] - Cr2+ - 2[Cr+ + Nd +  p - n0 (10)

i s S d

2.3.8. Explicit Motivation for Autocompensating Cr in GaAs at Room Temperature

(300K)

Suppose now that there is no interstitial Cr donor level and that all

the Cr is substitutional on Ga sites and acts as double deep acceptors.

Assume room temperature (T-300K) and consider the valence band as one

single band.

2.3.8.1 The Resistivity as a Function of Fermi Level

Impurity scattering is not dominant at room temperature, so the mobi-

lity is essentially independent of doping. We use Kittel's [24] values for

the mobilities:

Un = 8800 V cm2/s

4 2
Up 400 V cm2/slp

The resistivity is then given by (two bands)

1 + l/b
e i + (/b)e -x

where p is the intrinsic resistivity

P [q pn ni (l+1/b)]'l (2)

.. .....
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b n /Up  (3)

and
EF(Ei

kT

EFi
The logarithm of P- - is plotted below in figure 22a as a function of T .

Pi EF-Ei kT

The maximum value of p occurs for -- z-1.5. Outside the region

-5 < E---E < 2 the resistivity is less than 10% of this and falls exponen-
kT E-E

tially the further away from - -1.5 one gets.T kT

2.3.8.2 The Fermi Level as a Function of Cr Concentration

At room temperature, T - 30OK, the band gap is

E - 1.42 eV
g

The electron mass and mean value of the hole masses are

m e - 0.07 mo

mh - 0.33 m0

The intrinsic carrier concentration is

ni  1.75 106 cm-3

I

0 .:1 VI -
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The intrinsic conductivity is

Pi M 3.9 108 Qcm

The intrinsic Fermi level lies at

Ej M (F-+E ) + 0.1 meV

which is essentially in the middle of the gap. We chose the following values

which are inferred from the level schemes in section 4

e 2+ Ei

e +- Ei +-0.3 eV

For the shallow residual donor we pick

ed - Ec - 0.01 eV

We do not know the statistical factors but let us assume that these are all 2,

as in the case of shallow impurities.

g 2+ - g - d- 2
5 5

For the residual donor concentration we pick a typical value

Nd s1010 n i



2-74

We use formulas (3), (4), (6), (7), (8), (10) of section 2.3.7.7 to

numerically determine the Fermi level as a function of the Cr concentration.

The result is shown in figure 22b and c. 22c is just a more detailed plot

of the region in 22b where the Fermi level drops steeply. The interval in

Cr concentration over which the resistivity is larger than 90% of its

maximum value is less than two orders of magnitude. This is not consistent

with the results obtained by Cronin and Haisty [8] who did not observe any

significant difference in resistivity when they changed the Cr content 3

orders of magnitude. This indicates that some kind of autocompensation

mechanism is likely.

2.3.9. Vacancies in GaAs

Since the vacancy concentration is intimately connected to the diffusion

of substitutional species it is worth taking a look at vacancy formation

and distribution in GaAs.

2.3.9.1 Equilibrium Reaction and Mass Action Laws

Let us assume first that the vacancies are in equilibrium with the rest

of the crystal. There are a number of reactions in which the vacancies are

produced. The presence of a surface will change the situation there, so we

distinguish between the surface (S) and the bulk (B) far from the surface.

Subscript g stands for gas phase, 1 for liquid phase and s for solid phase.

Bulk and Surface:

Ga Ga +VG ; [ Ga]V -l(T) (1)

As s Asi + VA8  ; [As ] [v] K K 2(T) (2)

Gai + Asi - GaAs ; [Gai] [ Asi] K K3 (T) (3)
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Fig. 22. (a) The resistiLvity as a function of the Fermi level in GaAs
(b) The Fermi level as a function of the Cr concentration

assuming no interstitial Cr and N 1010'n at T-300K
(c) Same as (b) for a smaller intervaf
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Ga i Ga, [Ga ]5 UK(T) (4)

Ga 4 Ga +V v [GaGals K - (T) (5)Ga 1 Ga [G.is [VGals

+1 [AS_____ T)(6As - -As KCT(6
i nl nlg pl/n 6

As

As As ~ As~ + Vs P[ As mK (7)

As [As]S

Ga1 + As GaAs ; [Ga] P; n" I8(T 8

From (1) -(3) for the bulk case we get

[V~ Kl1B (T) Y,2B(T)
VGI B[VAI]B - K 3B(T) K 9(T) (9)

From (1) -(3) for the surface case and from (4) -(8) we get

I(1(T) _1/n -1/n
GVAsS - K'T' Ps - K(T) As (0

[V "s(T) , As K () / (11)

Ga S 4(T)K 1(T) s(T1) A

(V~S(GK is (T K1 2( (12
EV~]S[~a] -K 4(T) K6(T) K8(T) 1()12

(AsAI]S - 1C7(T) K10 (T) - K 13 (T) (13)

(Ga Gal K~ 5 (T) 1C8(T) 1(11(T) K K14 (T) (14)

- -. -ILI
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The most interesting expressions are (9) - (12)

2.3.9.2 Resulting Concentration Profiles. Diffusion

Note that the vacancy concentration at the surface and infinitely far

away from the surface are different, as one might expect. It is also reason-

able to assume for 'normal' As-pressure that the vacancy concentration at

the surface is much larger than in the bulk. Between the surface and bulk

we have a transition region where the vacancy concentration falls off to the

bulk concentration. This fall-off is smoothed by diffusion of vacancies from

the surface. Note that the surface concentrations of vacancies are constant

(for constant PAs) if the diffusion is slow enough so as not to drain the

surface region and displace the equilibrium point. We thus expect a erfc-

form of the vacancy concentration sufficiently close to the surface. This

is observed by Chiang and Pearson [26] who also find the diffusion

coefficients

D(VAs) - 7.9 x 103 exp(-4.0 eV/kT) cm2-1

D(V Ga) - 2.1 x l0- exp(-2.1 eV/kT) cm s

In the bulk one expects the same concentration of V and V since the
Ga As

enthalpy change for the formation of neutral VGa and VAs is the same (1261

p. 2989). At the surface the concentration depend on PAs but one expects

normally that [VAs]S > [V GaS. Figure 23 is taken from [26] and shows the

vacancy profiles close to the surface. A total picture of [VAs], [VGa] in

accordance with figure 23 is shown in figure 24.
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Fig. 23. Near-surface vacancy distribution in GaAs
taken from Chiang and Pearson [26]
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Fig. 24. Phenomenological overall picture of the vacancy
distribution in GaAs
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The impression one generally gets is that As is very volatile and that

GaAs, when heated, loses much more As than Ga. We do not think this is

true in general. The difference between As and Ga is that, outside the

sample in the ampoule, As, due to its high vapor pressure, is the species

that is noticed, while Ga is just present as a liquid film on the sample.

For long annealing when the bulk concentrations start to get much

larger than the equilibrium value we expect to get disclocation climb which

will eat vacancies.

2.3.9.3 Electric Activity of Vacancies

[26] argues that VAs is a donor and VGa an acceptor. This will fit

well into our model. But there are other opinions. Dr. C.M. Wolfe thinks

vacancies are not electrically active, and this could also be accomodated

in our model to be presented below.

2.3.10. Super Fast Interstitial Diffusion

Cu is known to diffuse extremely fast in GaAs. It is believed that it

diffuses interstitially. Weiser [27] developed a theory for interstitial

diffusion in the diamond lattice. He found that one would expect some ions

of intermediate size to diffuse interstitially, virtually without any

potential barrier between equilibrium sites. He proposes that this may be

the case for Cu in GaAs which would explain its diffusion behavior. It is

not possible to make any direct comparisons with Cr which has an unfilled

d-shell and has 16% smaller ionic radii than Cu, but it is conceivable that

interstitial Cr may also diffuse rapidly in GaAs.
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2.3.11. A Model for the Diffusion and Electronic Properties of Cr in GaAs

We are now ready to summarize what has been said so far in a few.

points that will form the basis of a model that seems capable of explain-

ing many of the experimental results in section 2.3.2 in a unifying way.

1) Cr can, in addition to being a double deep acceptor on Ga-sites.

also occur interstitially where it is a shallow donor.

2) The initial distribution of Cr between interstitial and substitu-

tional sites is in general not an equilibrium one, due to the large barriers.

It depends on:

a. under what circumstances Cr was incorporated, i.e. tempera-

ture, vacancy concentration, and doping

b. how the Cr was incorporated, i.e. whether it was during bulk

growth, in diffusion, epitaxial growth, etc.

3) The redistribution of Cr depends on:

a. the initial distribution of Cr between interstitial and

substitutional sites, i.e. on the distribution dealt with in

2) and on the redistribution among sites. The latter depends

on temperature, doping, and the local vacancy concentration.

b. the spatial distribution of VGa , i.e. on the initial distri-

bution, net generation and diffusion. The generation depends

on temperature and As-pressure at the surface.

c. the response to the driving forces which depends on tempera-

ture. The driving forces are concentration gradients, elec-

tric fields, strain fields.

7 ------- - . --- 7SLI
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4) The interstitial Cr is very mobile. It moves interstitially,

virtually without any potential barrier. The substitutional Cr

moves slowly by a substitutional mechanism.

If Cr1 is a shallow donor we have approximately

[Cri] - [Crt] (1)

For Cr we have to take all the charge states into account
s

[Cr] -[Cr]3+ + [Cr + ] + [Cr+1 (2)

(Cr + ] and [Cr + ] are determined by the Fermi level EF according to
5 5

equation (3) and (4) in section 2.3.7

[Cr 2+  - [Cr]f 2 (EF) (3)

[Cr+ ] [Crs]fl(EF) (4)

The presence of different species which diffuse and react with each

other necessitates a set of coupled differential equations to describe the

redistribution. Suppose for simplicity that a one dimensional approach is

appropriate.

a[Cr1 a2 [Crl a[Cr ]
D(Cri) m(Cri)F(Cr 1 ) [Cr] t (5)at a~~x 2 1 1 1 a
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3 nCr n a 2[Cr] n-- [C
a -D(Cr a+), - mCrn )F(CrV-1  C fl+ +rC.]r]
3t ax2 m 8 r G

p [Crn+], n - 1,2,3 (6)n S

[VGa] =2 3VGa [Cr ]at [ DVGa) a 2 s([VGa] - [V ]) at(7)
at ' a x 2 Ga VGa~o)

The D's are the diffusion coefficients, the m's are mobilities and

the F's are forces acting on the different species. The terms

rn[VGa][Cri] - pn[Crs n+ I n = 1,2,3

model the net capture of interstitial Cr. The term

-s([VGa] - [VGa]O)

models the net production of Ga-vacancies. [V Ga ° is the equilibrium

Ga-vacancy concentration. According to the stability discussion in sec-

tion 2.3.6, p should be largest for n - 3. Depending on the Fermi level

any of the rn can be the largest.

.1n
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2.3.12. Comments Jn the Experimental Results

We will now go through the experimental results that we reviewed in

section 2.3.2. We will give our interpretation and when possible compare it

with that of the authors.

2.3.12.1 Redistribution of Cr in GaAs

2.3.12.1.1 Annealing of Cr without encapsulation

Kasahara and Watanabe [2] observed that for P" > 0 the Cr outdiffusion

decreases and the surface concentration does not tend to zero. They explain

this by a smaller thermal conversion at the surface, resulting in less

surface conductance.

According to our model the substitutional Cr diffusion should be

enhanced by a larger PAs since this results in a higher VGa concentration.

We suggest that the Cri that is present diffuses rapidly toward the surface,

where it partly leaves the sample and partly is captured by Ga vacancies.

For larger PAs we will get a larger capture of Cr and less outdiffusion.
As i

Thus the surface concentration will not tend to zero.

[2] also report that for large temperatures and diffusion times they

got more outdiffusion than expected, especially for P = 0. They propose

that an increase in V -concentration should increase Cr diffusion. As men-
Ga

tioned we think this unlikely. Instead we propose that for P - 0 we have
As

few VGa. There will be little capture of Cri which outdiffuses rapidly

without accumulating at the surface.

The results suggest that Ps controls the surface condition but has

negligible effect on the bulk. We think that, due to the effect of PAs on

[VGa] in the surface region, PAs will affect both Cr diffusion modes. It

will affect the interstitial diffusion much further into the bulk, since this
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is the fastest mode. But in this case [Cr1] is probably much smaller than

[Cr I which means that the bulk will be essentially unaffected, while the

surface region will be affected in the way just described.

Tuck et al. [3] got much larger outdiffusion than [2]. We think that

this is because the detectable Cr in this case is indiffused into the

material, resulting in a much larger proportion of Cri. The bulk concentra-

tion is lowered uniformly. This would be the case if Cr diffuses superfast,

which is what we suggest about Cri. The authors suggest that the migration

occurs interstitially which is consistent with our picture.

The high surface peak that develops could be explained by the vacancy

distributions that we discussed. In regions of high VGa concentration there

would be a large capture of Cri causing a build up of Cr. The authors too

suggest indiffusion of Ga vacancies as an explanation.

For larger PAs they got a higher surface peak and less total out-

diffusion. They explain this by the more stable conditions, due to higher

PAs. We suggest a more specific explanation: At the surface there will be

larger capture of Cri for higher PAs* This leads to an effectively lower

mobility there, and to less total out diffusion. In the bulk the mobility

is still the same which leads to the observed constant bulk concentration.

This is higher due to the lower effective surface mobility.

2.3.12.1.2 Annealing of GaAs:Cr with encapsulation

[4], [5] and [6] all observed a Cr depletion zone below the interface

and a much thinner Cr pile-up close to the interface. The depletion region

is considered to be due to normal outdiffusion of Cr while the thin pile-up

is an anomaly proposed by [5] to be due either to interface contamination or

non-equilibrium incorporation of Cr. We agree about the depletion region.

4 .___-
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It is probably due to substitutional outdiffusion of Cr. The pile-up at

the interface may also be due to forces such as strain from interface and

electric fields due to interfacial states. Since the interface concentration

according to [51 is higher than the solubility it is likely to be Cri.

2.3.12.1.3 Diffusion of Cr into SI-GaAs:Cr

As mentioned in section 2.3.2, Tuck et al. [3] observed rapid fall-off

in Cr concentration near the surface and exceedingly high penetration of Cr

leading to uniform bulk concentration. The authors suggest that these

features are due to indiffusion of Ga-vacancies and to interstitial

diffusion respectively. This agrees with our vacancy picture and our sugges-

tion that incorporation of Cr by indiffusion occurs interstitially, and is

essentially what was said in section 2.3.12.1.1.

2.3.12.1.4 Epitaxial growth of GaAs on GaAs:Cr

Tuck et al. [3] get large outdiffusion and note that S-doping of the

epilayer inhibits the outdiffusion. They explain the latter by (1) the

presence of a substitutional impurity (S) on one sublattice is sufficient to

affect the solubility of another (Cr) on the other sublattice and (2) the

vacancy concentration is a function of the Fermi level. We explain the

large outdiffusion as a result of the large amount of interstitial Cr in

the substrate. In our picture n-doping enhances capture of Cri since it

induces the Cr to go into a compensating acceptor state. This lowers the

effective diffusion constant. Wilson et al. [7] get less outdiffusion than

(3]. Their substrates are prepared in the usual way to get SI-GaAs:Cr,

which for not too large Cr content gives little interstitial Cr that can

outdiffuse.

i7
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2.3.12.2 Electronic Properties of GaAs:Cr

2.3.12.2.1 Bulk grown GaAs:Cr

Cronin and Haisty [8] were first to report that Ct doping of GaAs gives

SI material for sufficiently large Cr concentration, even for a large excess

of Cr. They explained this by Cr being a deep acceptor and found unverified

indications that the excess Cr precipitated in a second phase. In our

picture the almost perfect compensation is due to autocompensation of Cr.

Zucca [9] reported that SI-GaAs:Cr can be either n- or p-type. In our

picture, if the incorporation of Cr is not ideal, too little or too much Cr,

can be incorporated, causing n- or p-type material, respectively. Zucca also

observed that for excess Cr, NaIN d was still close to 1. He explained this

by invoking a deep donor which he suggested was oxygen. He could not verify

this, and in the most Cr-rich sample, which also was compensated, he could

not detect enough oxygen to explain the observation. We instead invoke our

autocompensation mechanism to account for the phenomenon.

Brozel et al. [10] observed that increasing the Si concentration

during growth also increased the Cr concentration and that parts of the

crystal which had high Si concentration also had high Cr concentration.

This indicates that Cr also distributes geometrically so as to compensate

shallow donors, as suggested by the coupled transport equations.

2.3.12.2.3 Cr indiffused into GaAs

14 -3Tuck et al. [3] got p-type (p-6.4xl0 cm ) material after indiffusion

of Cr into SI-GaAs:Cr. This is surprising to us since we would have

expected the indiffused Cr to be, mostly shallow interstitial donors. When

they indiffused Cr into n-GaAs:Te the material became high resistive

_,-'1 .1_ _ _ _
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(n or p < 1014 cm-3) in a 75 pm thick region below the surface, while beyond

this the material remained n-type. This is less surprising. We expect the

n-doping to enhance the capture of Cri, especially in this case when the

material was not pre-doped with Cr.

2.3.12.2.4 SI-GaAs:Cr annealed with encapsulation

Asbeck et al. E6] observed a spurious a-type layer just below the

interface. This fits well with our picture. We have argued before from the

point of view of solubility that the thin Cr peak at the interface probably

is Cri, in which case the material should be n-type here.

Favennec and L'Haridon [4] observed three kinds of substrates: quali-

fied (A), those that showed n-conversion (B) and a few that showed

p-conversion (C). The n-conversion was explained by outdiffusion of Cr,

leaving a Cr depleted region. The p-conversion was more complicated, but

could occur according to the authors if (1) four levels are present at the

same time: a shallow acceptor, a shallow donor, a deep acceptor and a deep

donor, and if (2) the deep donor diffuses towards the surface.

We think that the behavior can be explained in terms of the initial

distribution of Cr among sites and the number of residual donors.

A. There is just enough Cr to compensate not too many residual donors.

In absolute numbers then, little Cr will outdiffuse substitutionally. The

material is compensated even after anneal. The substrate is qualified.

B. There is just enough Cr to compensate many residual donors. In

absolute numbers, much Cr will outdiffuse substitutionally and leave

unneutralized donors. The material will be n-type in a region below the

interface. The substrate is unqualified (B).

*I
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C. There is more Cr than necessary to compensate. There will then

be a large amount of Cri which will outdiffuse faster than Crs, leaving more

Cr than necessary to compensate. The material is p-type in a rather thick

region below the surface. The substrate is unqualified (C).

2.3.12.2.5 Expitaxial growth of GaAs on Si GaAs:Cr

Yamasaki et al. [12] observed an n +-layer just above the interface

between the substrate and the n-type layer. We suggest that Cr in the

form of Cri outdiffused into the epilayer.

Khokhlov et al. [13] observed higher electron concentration in the
epitaxial layer close to the interface between the substrate and undoped
layer. This is essentially the same observation.

Schlachetzki and Salow [141 grew undoped epitaxial layers on Cr doped

substrates. The layers were n-type for growth temperatures Tg below some

critical temperature T, p-type for T> and high resistive for T

T depended on the source material. They explained this by suggesting
0

different incorporation of donors and acceptors in the source material at

different T even though there was no intentional doping. We think that theg

observation can be explained by Cr that outdiffuses into the epilayer. At

different temperatures and source materials the circumstances for incor-

poration are different. For instance, at high temperatures the vacancy

concentration is higher, which enhances the capture of Cri . The Cr that

outdiffuses is probably mostly Cr1. For low temperatures these will

probably remain interstitial, resulting in an n-type layer.

4 Khokhlov et al. (13] also reported that for higher T the electron

concentration in their epilayers increased faster with T than the intrinsic

I - J[ I " , I l II I •]' '"i L :
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electron concentration. They explained this by an increased density of

electron suppliers due to thermal rearrangements of defects. This fits well

into our picture with the rearrangement being Crs to Cri .

2.3.13. Conclusion

Cr-doped semi-insulating GaAs is one of the most important substrate

materials for a variety of devices, and it offers enough advantages so that

it will undoubtedly continue to be used in this capacity in spite of its

frequently problematic technology.

The semiquantitative model presented here searches for the causes of

the sometimes erratic behavior of the material. It appears sufficiently

promising to warrant further study.

We shall try to design experiments that can pin down the more tenta-

tive features of the model. Such an approach can take advantage of working

with material that must be fabricated in any event in connection with the

device wo - under this contract. The work, if it is successful, would

contribute to bringing the technology under better control.

4
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3. Existing Device Studies

3.1 Harmonic Generation in Transferred Electron Devices

3.1.1 Introduction

Short Gunn diodes are dominated by an accumulation layer instability

that is launched from a region near the cathode. The charge layer grows

in time and moves toward the anode where it is collected. As a conse-

quence of the noninstantaneous transfer of low energy electrons from the

central valley to the satellite valley, the electrons are not accurately

characterized by the static velocity field curve for the material. The

electron velocity increases above the static peak and after a characteristic

time slows to its equilibrium value. Rees (I), using Monte Carlo simulations,

examined the behavior of low n-L product devices at frequencies whose

periods are comparable to the response time of the velocity-field curve.

Assuming a deformation potential of 109 eV cm-I for intervalley scattering,

a maximum operating frequency of 100 Ghz has been predicted for space

charge free devices. In a similar Monte Carlo calculation by Jones and

Rees (2) , the growth and decay of accumulation layers were simulated for

a few special cases in GaAs.

The results of that simulation indicate that a non-zero time is

required to establish the negative differential conductivity of the

electrons and hence a delay exists in the nucleation of the space charge

after the field has risen above threshold. This delay results in dead

time which is not reduced by shortening the sample. In addition to the

time delay of the charge nucleation, a dead zone between the cathode

contact and the anode exists in which no charge growth occurs. This

region results from the non-zero time that is required to bring a low

energy injected electron above the valley energy separation and the time
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required to transfer to the satellite valley. Simulations show that
-1

this region may be as much as 3 pm for average electric fields of 6 kv cm

The simulations also indicate that this region is significantly reduced

for large electric fields in the cathode region. If these simulations

are correct, one would anticipate a significant change in the maximum

operating frequency if electrons of high energy are injected into the

region or if the electric field in the cathode region is increased above

its usual value.

The decay of the satellite valley electrons from the high to low

field region has been observed in simulations by Curtice and Purcell

(1970) and Jones (2) to invariably fall rapidly. This fall in some cases

can be as short as .7 ps. The primary reason for this fast fall is

predicted from the cooling of the distribution that occurs when electrons

are scattered in a direction against the field. These electrons are

rapidly brought to low energies by the electric field. This rapid decay

of the accumulation layer will lead to a large harmonic content in the

4l output current. It is therefore interesting to observe the harmonic

content and use this information to estimate the rate at which the

accumulation layer is quenched. This rate is likely to be indicative of

the scattering rate from the satellite valley and the cooling rate of

the field. Furthermore one should be able to obtain higher power opera-

tion in this mode than the fundamental at frequencies for which the

accumulation layer formation time is a significant portion of an rf cycle.

To obtain an idea of the merit of this technique of generation of

millimeter wave power, several devices have been evaluated in circuits

designed to permit harmonic operation of the devices. The circuits,

devices and results are reported in the following sections.
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3.1.2 Harmonic Oscillator Circuits

3.1.2.1 Coaxial circuit

The basic elements of the coaxial circuit are shown in Figure 1.

The fundamental resonator is formed by the TEM line section between the

packaged Gunn diode and the low pass filter. A thin dielectric rod is

placed near the diode to permit slight tuning of the resonant frequency.

The harmonic resonator is formed by a waveguide line section behind the

resonator post. The line section is cutoff at the fundamental and hence

does not significantly affect the frequency of operation. Several dielectric

rods are inserted into the line section to adjust its resonant frequency

and the coupling to the main resonator. In actual operation very small

changes (- 200 mHz) of the fundamental frequency are observed through

variations of the harmonic resonator. The output of the harmonic power is

coupled to the load via the front iris which opens to a waveguide that is

cutoff at the fundamental. This waveguide section is removeable to allow

monitoring of the fundamental power and frequency. Initial measurements

are made on diodes using the coaxial circuit without the fundamental filter.

The circuit is adjusted in frequency by setting the length of the

coaxial line section and its diameter. At lower frequencies where the

package parasitics are small, the line section is nearly half wavelength.

As the frequency is increased the package parasitics force the resonator

length to drop faster than 1/f and at 60 Ghz the resonator is nearly

quarter-wavelength indicating a parallel resonance of the unmodified

package near 60 Ghz. The frequency of operation can be further increased

up to 70 Ghz by additional shortening of the resonator.

To permit operation above 70 Ghz modifications to the package where

fcund necessary. Using a diamond file the 0.030" diameter ceramic was

____________I
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reduced to 0.023" with a corresponding increase in operating frequency

to 78 Ghz. Further reductions in the package wall thickness showed little

change in operating frequency and were often fatal to the mechanical

integrity of the package. Additional wires and ribbons connecting the

chip and the top of the ceramic package provided only slight changes in

the operating frequency. For this reason designs are now under way to

use unpackaged diodes in this circuit.

The harmonic power is nearly zero until the rear resonator is adjusted

to the harmonic frequency. The iris width is then increased until the

power is maximized with respect to iris size. Further matching is then

done using the 0.020" diameter quartz rods. Tuning is iterated to obtain

the maximum harmonic power. The power is measured using a series of high

pass filters. In most cases the only significant power is at the harmonic

at which the unit has been peaked.

3.1.2.2 Disc circuit

The disc or hat circuit is constructed using a radial resonator at

the fundamental frequency. The diode is mounted in the broad wall of a

waveguide that is cutoff at the fundamental frequency and propagating at

the desired harmonic. The location of the diode is chosen to form a Xg/2

resonator between the back wall and the diode post. The fundamental

radial disc resonator is fabricated at the end of a line section on the

low pass feedthrough and the length between the resonator and the low

pass filter is chosen to be slightly less than X 14. Dielectric rods
0

are inserted in the side walls of the waveguide and used to tune the coaxial

section between the feedthrough and the disc. The harmonic coupling is

optimized by choosing the thickness of the disc and the impedance of

the coaxial section that joins the feedthrough and the disc. Additional
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dielectric rods are inserted in the harmonic resonator region and in the

reduced height waveguide section and are used to couple the circuit to

the load. The circuit described here is the one used by most of the labs

reporting 94 Ghz Gunn sources.

Several prominent modes are found to be present in this circuit which

often lead to the existence of two fundamental signals. Under these condi-

tions significant power has been observed at the sum of these two frequencies.

This output can often be as large as the harmonic and in two cases it can

be optimized more easily than the harmonic case.

The maximum fundamental frequency of the disc resonator is determined

by the diameter of the disc, its thickness, and the diode package. The

disc diameter for 50 Ghz is -0.053" for a disc thickness of 0.015". The

frequency increases as the disc is reduced in diameter. To maintain a

constant coupling the diameter of the coaxial section must also be reduced.

In addition, the dielectric loading of the package above 60 Ghz significantly

reduces the required disc diameter and it is therefore necessary to use a

different circuit design unless the package is reduced in volume. Using a

package with a wall thickness of 0.005" instead of 0.010" has resulted in

a frequency of operation in excess of 70 Ghz.

3.1.2.3 Waveguide circuit

The waveguide circuit consists of a reduced height TEl01 cavity at

the fundamental frequency. The cavity is significantly foreshortened to

compensate for the diode package volume and for the dielectric rods

inserted in the narrow wall which tune the harmonic resonance. The diode

is located near the back wall of the cavity with the best location being

centered in the broad wall with the diode's dielectric touching the back
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of the cavity. A low pass filter centered at the harmonic is used to

provide dc bias. The post diameter is chosen to be the same diameter as

the diode in order to maximize the post resonant frequency and minimize

fringing capacitance in the diode region. The iris width is chosen to

be X /2 at the desired harmonic. A section of waveguide which is cutoffo

at the fundamental is used to separate the fundamental from the load.

The waveguide section is attached with several screws and can be easily

removed to determine the fundamental power and frequency.

The dielectric rods in the side wall lower the higher order modes

(TE ) faster than the fundamental and it is therefore possible to
mon

resonate both the fundamental and the harmonic with some rod manipulation.
The circuit losses appear to be somewhat lower than the disc or coaxial

circuits and the output powers in the region of 80-100 Ghz (fundamental

40-50 Ghz) appear to be 1-2 db higher than with the alternate circuits.

The complex mode possibilities allow wide changes in the harmonic coupling

circuit and provide an interesting higher Q source. Several tries have

been made to scale this circuit up to the 75 Ghz region have lead to the

conclusion that the package parasitics are too large to permit fundamental

operation above 60 Ghz. Designs are now in progress which eliminate most

of the package in this circuit.

3.1.3 Experimental Results with Flat Doped Diodes

The power versus frequency performance of constant doped GaAs Gunn

diodes has been examined in the coaxial, disc and waveguide circuits.

The maximum observed output powers at the fundamental, second, and in

some cases, third and fourth harmonics have been measured and their

bias voltage dependences have been noted. An extremely sharp drop in

output power has been observed for frequencies above 100 Ghz. The nature
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of the drop is in part circuit connected but it is likely that much of

the performance degradation is v-E response time related.

The devices used in this section are fabricated from multilayer

epitaxial material having both buffer layers and epitaxial cathode contacts.

The carrier concentration of the cathode contact layer and the buffer

layer is 3-4x107 cm -3. The doping profiles are nearly constant in the

active region and in all cases decrease slightly toward the cathode (surface).

The layers are all grown on 2* off (100) toward (110) silicon doped

1-3xlO 18 cm-3 substrate material. The substrate thickness is kept less

-3than 6.5xi0 cm. The units are of the flip chip mesa construction. All

units tested are mounted in a threaded stud ceramic package having a

ceramic height of 0.015" typical and a starting wall thickness of 0.010".

The inside diameter of the ceramic is 0.013" and the pedistal extends into

the ceramic 0.005". The top leads of the diode (anode leads) are 0.002"

diameter fully annealed gold wire that is thermal compression bonded in

an "X" configuration. For most of this work a lid was not placed over the

metalized ceramic in an attempt to minimize extra inductances.

Diodes were fabricated on epitaxial material with active layer

thicknesses in the range 1.5 pm to 3.5 um. Active layers with thicknesses

less than 1.5 Pm showed no signs of oscillations either at dc or at milli-

meter waves. Doping densities as high as 5x101 cm-3 were tried in an

attempt to obtain a high N-L product. However even these high doped I
samples did not show Gunn effect. Table 3.1.3A lists wafers which were

found to yield microwave oscillations. Those which yielded the highest

fundamental powers are listed in Table 3.1.3.B. The final diode current

was adjusted using in package etching and in most cases the diode current

was between 700 and 800 mA.

-



3-9

The output power recorded in Table B are the best values obtained

from devices made from the wafer and operated in the coaxial configuration.

This corresponds to the highest fundamental power measured. Several trends

should be noted from Table B. The highest fundamental powers are all

obtained at the lowest frequency for which the diode was measured. In

all cases the power declined as the frequency was increased. This would

tend to indicate that the effective lengths of the samples are all too

long for the highest frequency of operation. This however has not been

borne out by thinner samples. There is likely a minimum length for which

no space charge growth occurs.

Several samples were operated in a pulsed mode at the low duty. A

300 nsec pulse was used and the operating voltage for maximum power output

under pulsed operation at 70 and 75 Ghz did not change significantly from

the cw values of the best diodes. It is therefore likely that the bias

voltage decline is not significantly a thermal problem but rather a result

of maximizing the space charge growth.

3.1.4 Harmonic Power of Flat Profile Wafers

The harmonic power of the evaluation diodes has been measured in the

coaxial, the disc, and the waveguide circuits. The power outputs at the

harmonics have been measured at frequencies up to 148 Ghz. The output

powers for all of the flat doped diodes decline very sharply above 100 Ghz

and the output powers at 148 Ghz were only a few tenths of a milliwatt.

The decline in output power is so steep that it is difficult to attribute

the decrease to a single cause.

The maximum power output at the second harmonic of wafer 3C33-1 is

displayed in Figure 2. This wafer showed large low frequency output power

at 35 Ghz. The output power at the second harmonic was in excess of 25%
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Table 3.1.3.A Properties of Wafers Exhibiting

Millimeter Wave Oscillations

Wafer Nd (cm3 ) Active Length Drop Back

(cathode side) (10-4 cm) (I p I V)

(pulsed)

3C33-1 7x10 1 5  3.0-3.5 1.6

*1302-1 7.8x10l15 3.0 1.4

3C32-2 7.5xl1015 2.7 1.4

3D6-1 1.5X10 16  2.3 1.6I3D8-1 2.5xl01  2.0-2.2 1.5

3D10-l 2.5x101  1.8-2.0 1.4

3Dll 3.5xl101 6  1.8-2.0 1.3

3E11 2.OxlO 16  1.8-2.0 1.4

3E12 4xl10 1 6  1.8 1.3

3D13-1 4x10 16  1.5 1 (No OSC)

3E13-2 4x10 1 6  1.5 1 (No OSC)

JAl-5-1 2xl10 1 6  2.3 1.5

JAI-5-2 2xl10 1 6 1.5 1 (No OSC)
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Table 3.3.1.B Conditions for Maximum Power Generated

at the Fundamental Frequency

Wafer- Fundamental Power V Bias
Frequency (MW) (volts)

(GHz)

3C33-1 35 320 6.1

50 105 4.3

60 30 3.0

70 .1 2.3

3D8-1 45 200 6.5

50 160 5.0

60 110 4.7

70 70 4.3

75 67 3.9

3D10-1 50 170 5.5

60 103 5.3

70 57 4.6

75 50 4.0

JAl-5-2 40 180 5.7

50 165 4.9

60 100 4.6

70 70 3.9

475 60 3.7
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of the output power ubtainable at 35 Ghz. At frequencies up to 94 Ghz

the highest powers were obtained from the waveguide harmonic circuit.

At frequencies above 94 Ghz the disc resonator and coaxial circuits

yielded nearly equal powers. The sharp decline in the harmonic power

might be expected from the fundamental power roll-off observed.

The third harmonic power was obtained in similar circuits. The

output power at the third harmonic for wafer 3C33-1 is shown in Figure 3.

The surprising observation is the extremely severe decline in output above

the fundamental frequency of 35 Ghz. This would not have been anticipated

from the fundamental measurements.

The output power at the second harmonic has been graphed in Figure 4

for devices from wafer JAI-5-2. These diodes yielded up to 45 mW at

90 Ghz however the output powers declined very rapidly above 100 Ghz.

The output power at 148 Ghz is 0.3 mW. Several other wafers were evaluated

and in each case the output power was found to decline sharply above

100 Ghz for any harmonic.

Three probable causes for the rapid decline in output power are the

package parasitics, the substrate skin depth and the v-e response time.

Further work will be needed to sort the three causes. The new circuits

will allow unpackaged plated heatsink devices to be used with much lower

parasitic capacitances and inductances. A technique to deposit a thick

layer of gold over most of the exposed subs-rate is being developed.

In addition further work with the circuits may allow a wider range of

matching.

3.1.5 Harmonic Generation In Cathode Notch Diodes and Future Plans

A significant portion of the flat doped diode in the region near

(2)
the cathode remains below threshold in short samples. Jones has

ii __



3-14

25

20

I
15

2\

IL

4...

5

0 • I *. ? I

100 105 110 115 120 125 130 135 140 145 150
Frequency (GHz)

Figure 3

Third harmonic output of Gunn diode fabricated from wafer 3C33-1
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simulated accumulation layers and his study indicates that the layer

formation time is extremely sensitive to the cathode region. In addition

once the layer begins to form its growth rate is highly sensitive to

small changes in the electric field. Furthermore, the likely velocity

overshoot is only large if the electric field in the region of accumula-

tion layer formation is large. It is therefore interesting to examine

high frequency harmonic generation of diodes that have a thin low doped

region next to the cathode contact. The effect of this doping notch is

to increase the electric field in the cathode region to obtain a more

rapid growth of the accumulation layer and obtain an overall reduction

in the response time.

Two wafers were grown that have a low doped region at the cathode

contact. One of them has a 0.3-0.4 4m region between the cathode contact

and the active layer with a doping density as measured by C-V of 2-

2.5xi015 cm - 3 . The other wafer employs a so called "metalic" contact

without the aid of a heavily doped region for the cathode contact.

Diodes were fabricated out of both wafers and the wafer employing the

"metalic" contact showed significant power at 50 Ghz. These diodes have

been measured in the fundamental and harmonic circuits. The active

layer excluding the lightly doped region is 2.2 pm thick and the active

region carrier concentration is 1.8x10
16 cm .

The fundamental output power is shown in Figure 5. The output at

40 Ghz is 150 mW and the bias voltage is 6.8 volts. The power declines

slowly to 45 mW at 74 Ghz in the coaxial circuit. Large changes in the

operating current have been observed with changes in temperature. The

harmonic powers of these devices show significant variations between

units. However the better devices, as can be seen in Figure 6, produce
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substantial power at frequencies above 100 Ghz. These devices have

yielded up to 5-6 mW at 144 Ghz. A slightly higer device capacitance

prevents the packaged devices from operation above 144 Ghz and measured

values of the third harmonic appears low. This may, in fact, be a

circuit limitation enhanced by the package parasitics.

The cathode appears to be a possible area for improvements in genera-

tion above 100 Ghz. In the next period hot electron injection techniques

will be evaluated. The injection can be done with either a hetrojuction

or a barrier-n+ region. The techniques of harmonic evaluation will be

applied to In P diodes late in the period.
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3.2 BULK AND CONTACT PHENOMENA IN

MILLIMETER WAVE DIODES

P. Chen, F.J. Rosenbaum, R.E. Goldwasser

3.2.1 Introduction

In the study of semiconductor devices for use at millimeter wavelengths

it is important to know the behavior of carriers in the bulk material and at

the device contacts. Since device dimensions are necessarily small, electric

fields sufficiently large to produce avalanche breakdown may be encountered,

even for modest applied voltages. Furthermore, many existing devices such

as mixer diodes and Impatts employ depleted regions where high electric

fields are present. In order to better understand the operation and limita-

tions of mm-wave devices we have been studying the current-voltage relations

for diodes in the presence of avalanche breakdown, and for diodes with nearly

constant reverse depletion capacitance (Mott barrier or punch-through barrier

junctions). 1,2 One and two-dimensional finite element analyses of the carrier

concentrations and field distributions have been developed in order to examine

the details of the charge depletion approximation commonly made in the analy-

sis of depleted regions. We have included the effects of field dependent

mobility and diffusion in GaAs. We have also conceived of and are analyzing

a new device geometry which may prove useful for sub-harmonically pumped

mixers at millimeter wavelengths.3-5 A simulation for the new device pro-

vides a means of quickly and economically evaluating its performance.
3.2.2 Avalanche Breakdown Analysis 

1,6

Assume a one dimensional Schottky Barrier diode as shown in Figure 1.

The bulk region is doped n-type, at a level Nd. A reverse-bias voltage V

is applied to the device between the S.B. and ohmic contacts. For simplicity,

assume the doping and the space charge in the depletion region are uniform.



3-21

+

N(n-type)
Nd -

(a)
Schottky Ohmic
Contact _________________Contact

x- 0 xinW

1-

-4

V.4

(b)TWx

-4

V4

(c) 10

Figure 1 (a) One-dimensional Schottky Barrier diode.

(b) field distribution when the depletion length
T < W; W is the diode length.

(c) T >W.
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The electric field distribution in the depletion region, T < W, is given

by

E (x) - N dX 2I
d T

where T - 2.V
qN"

If the depletion region extends across the device, T Z" W, then the field

is given by

E(x) - NdX - (2)

q Nd 
2

where VP =-

is punch-through voltage. For convenience, we use positive values for

the avalanche breakdown field and the voltage.

3.2.2.1 Avalanche Breakdown

If sufficiently large reverse bias voltage is applied, avalanche

breakdown will occur. The electron and hole currents can be determined

from the continuity equations. In the dc case, assume

dJn(X) - %(E)J n(x) + B(E)Jp(X) (3)

dJp(x) - a(E)J (x) - B(E)Jp(x) (4)

where E - E(x), has been defined before and a, 8 are the electron and hole

ionization coefficients, respectively. The total current density, J, is

a constant.

J - Jn(x) + (X). (5)

Solving the two differential equations above, we obtain

, - -
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OW
J (o)+ J (W) exp [- W (a-B)dx(a- U p (6)

1 fW exp[-I x (a-8)dx dx

and the avalanche breakdown voltage can be found from the denominator

when

1 - f ,[-*/.x (ai-) dx]dx - o (7)

Stillman and Wolfe6 suggest that and 8 have the following form:

a - 2 x 106 exp [-2 x 106/E]
(8)

8 = 105 exp [-5 x 105/E]

where E is the magnitude of the field and is a function of x.

3.2.2.2 I-V Characteristic Relations

In n-type material the electron current density is large, so

Jn o) >> Jp(w), f9"W (a-B)dx < 1, and the total current density becomes

in (o)

1 _f a exp [fi (a-) dx] dx

where

Jn(0) Jsat 2 exp (- -OB)" (10)

We may define an avalanche multiplication factor, M, such that

M = 1 (11)

1 e/"pc -] X~z-O) dx] dx

and so

J NJ (0) (12)

The behavior of M can be examined simply by taking a B.
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Then

M 1 (13)1 -I w adx

Now, 1W adx is an exponential integral, and using polynominal and

rational approximations, one can calculate the value of M corresponding

to the applied voltage V. For the case of a # 8, polynominal and rational

approximations can be used inside the denominator integral and the value

of M found numerically. Some representative multiplication voltage curves

are shown in Figure 2.

The doping density Nd affects the breakdown voltage as shown in

Figure 3. Also plotted there are several experimental results taken

from the literature.

After some manipulation it is found that the M curves can be approxi-

mately represented by the following expression7

1
M- (14)

[1 - (_)nm
BD

When Nd is between 1016 and 1018cm- 3 , the n, m values which fit the data

are given in Table 1.

3.2.2.3 Large Signal Analysis

The preceeding section dealt with the dc breakdown characteristics

of GaAs. Breakdown can also occur if a sufficiently large time-varying

reverse bias voltage is applied to the diode. To analyze the time depen-

dent case, assume a one-dimensional structure with equal electron and

hole ionization coefficients, a - B. As shown in Figure 4, osxx a is

the avalanche region. The current in this region satisfies the
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Figure 2 Two representative current multiplication curves

respect to applied reverse bias voltages.

(ci,O see Equation (-8)).
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-20 -IS -16 -14 -12 -10 -8 -6 -4 -2 0
0

0,

-2 '-4

16

a

-4

-6

re

4 -10



3-26

Figure 3 (a) Calculated breakdown voltage f or

GaAs as a function of doping-'density.

(b) Experimental results taken from

Sze 1, pp 115, which assume a - S.
6(c) Taken from Stillman and Wolfe
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N4 0.1 0.251 0.50 0.751 1.0 2.5 5.0 7.5 10

ni 3.6 3.4 3.2 3.0 2. 8 2.4 ?.0 1.6 1.7

'1 0.9 1.2 1.6 1.5 1.4 11.6 1.8 1.61 1.71

Table 1 GaAs Avalanche multiplication exponents as a

function of doping density.

(The unit used for N d is 10 
17 c& 3)

Amp
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Figure 4 (a) Model of one-dimensional Schottky

Barrier diode with (1) avalanche

region, (2) drift region, and
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following continuity equation
8

d__ 2 [/2
i (t) Ji(t) a(E)dx-1 + - Jsat (15)

d- i Ta J -I TS

Here, the transit time throught the avalanche region is

aJ = (for n-type),:a a t J ar Js + ps ans

and v8 is the saturation velocity of electrons.

The field in the avalanche region is given by

E(x,t) - E1(x) + E2 (t) (16)

where E1 (x) is determined by the background doping. At any instant of

time, the field throughout the avalanche region is determined by the I
value of the field at any reference plane. For convenience, we take

x " aand the avalanche field is defined as E at -W E (x a t). The
ionization integral may be expressed as

a (E)dx - F(Ea(t)

After some rearrangement, one obtains (18)

.Vp V T(t) st2
a(Q%)-E- V+ (d i n (t ')dt'-

a X.T Y- X /- (rd+t' t Jn rd p

where E p =E1 (xa), the punch-through field,

VT(t) Vo E(x,t) dx; xT is total length of the active region.

t
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Vp a1 El(x) dx

E (x) _q - x N (x') dx -T N Wx) dx'] (19)

ta x T A T x- Xa

d v
S s

E(x,t) A g (Nd + p-n) dx

Also, we assume a relatively narrow avalanche region of width Xa, with

ionization coefficient a, and a wider drift region where a = o. The dis-

placement current in the avalanche region is assumed constant.

Now, if we know the applied voltage VT(t), and ionization coefficient

a, the current under avalanche operation can be found from the following

expressions, assuming a reasonable value of x :

d JiJ ( )  2 [/x

-J t - J inj(t) a(E) dx-i + Jsat (20)
dt ina ina

(21)
V V(t) Js t'dt'- T2

E(t) - + ('d + t" t) Jinj(t) d PSI
p XT X• it-nd

Using direct iteration or the Newton-Raphson method, it is possible to

obtain an approximate solution for Jinj(t)

Once the injected current density is known the large signal I-V

relation can be calculated as follows:

j (t) j (x,t) + J (x,t) + e E(xt) (22)
i n p at. .(2

- : ": I * ,"-- '6'-~t "
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Integration over the entire active region gives:

_e d_ XT E (x, t) dx + -L PJxt+J(~d

c d +(23)

Jijt = - -d t )- J x t + J ('d

xT d VT(t) + Jind(t)

where Jind(t) is the space average of the conduction current:

J ind( t ) ' JLaiinj (t dx + JTin (x,t) dx + x d PSI (24)

a
where x d  x x a and J p (%,t) J Jps in the drift region.

Thus, t

-A i .( + x _ W) d ]
ind (t) x inj d  tnj (25)

where

--

dv V

A- xd xT a

d~ VT JijtXJnTt

The term c d VT Mt or Jin(t) J Jind(t) is the induced current, which

comes from variation of the terminal applied voltage VT(t). Equations (20)

and (21) can be used to examine, numerically, the large signal behavior of

an avalanching region. This formulation may prove useful in the simulation

of breakdown behavior in millimeter wave mixer diodes and in field effect

transistors.
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3.2.3 Mott Barrier Diffusion Model
1'13,14

A Mott barrier, also called punch-through barrier, is defined as one

in which the epitaxial layer is much narrower than the required depletion

width, under the depletion approximation, such that the layer is depleted

even under forward bias. For simplicity, we assume an ideal contact and

no surface states. The structure is shown in Figure 5. The band diagrams

at various biasing conditions are also shown in Figure 5. Assuming that

the required depletion width is W0 (W 0 W2 and the built-in voltage is

Vo, the electric field is given by

(26)
E(x) A [N-( -N (W -N + (W-W 2 )] oSx W (

[ [N (x - W N+ (W W2)]

CW 2  0 2 W1 5x <W 2

-N+ (W° - x) W2 I x < W
E 2 0

an W2 ( N W2 N (l N- 2
an 0 2£ e 0 l-T 2  -. j - W 1 ]

N N+

2l +2 0 2 2

Therefore,

SV o  2 - w ] 1/2 (28)SqN + N+ 2  N+ N 1

When we apply a voltage V, the depletion width W will be:

2 (V-V) N 2+ N N- ] (29)
q +( - ')W W1 1

and W W
2

714
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Schottky 4 -
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Figure 5 (a) Mott Barrier model and the band diagrams at
(b) zero-bias, (c) forward-bias and (d) reverse-bias.

Io
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Figure 6 I-V curve for IHott Barrier diode as, in~ Figure S.
N- - 2 x 10 15 cmi3

N 1 Ix 10 17 cm-3

N+ 2 x1018 ci-

W 1 -0.046 x105 cm

W- W 1.0 x 10- cm
Built-in Voltage V 0 0.9 volt
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3.2.3.1 I-v Characteristic Relation

Charge transport is governed by the current equation and Poisson's

Equation. We use the field dependent mobility for GaAs 9 '10 1 1 and write

the required equation as follows:

JJn qnun(E) + qDE) 
(

a n n 3x(30)

where ( (

n(E) 0 (31)

1T+ (E )4

D.(E) ' E) 3 2 (E) (32)

q E + Tvn(E

72* ; _ (Nd a) (33)

E -d (34)dx

dJ- o (35)
~di

where

N N o S x < WdI

-N W1  x < W

-W w2 _S x

n(o) N- Nep (- - Vo)

Sn(w)
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It is not easy to solve the above nonlinear system in closed form,

although it is possible to obtain an approximation numerically . (See

Figure 6). In order to proceed with the numerical analysis, it is

necessary to know the barrier height. As a matter of fact, besides the

properties of the metal used for the Schottky Barrier contact, the image

force between metal and bulk material also affects the barrier height.

This is called the Schottky Effect.

3.2.3.2 Image Force

Figure 7 shows the energy diagram for electrons near the Schottky

metal contact. The height of the potential barrier is reduced because of

the attractive force between an electron and its image in the contact

metal. If we take this image force into account, since the location of the

potential maximum xm is very close to the metal surface; let xm < W1. The

electric field at that point is zero,

L(x [N-(x -Wl (w - (w - W ) I +2 o (36a)
m C m 2 1 216w x2

or

2 4- (W ) + N (W - W) + N (W - W) (36b)
16w x2  1 2 1 2

m

so

1 (36c)

16n [(N-W1 + N(W2 - 1) + N+(W - W2) 12

iI
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x0 m x
- iA image potential

energy

-q~

Figure 7 Potential energy of electrons in a Schottky

Barrier diode, taking barrier lowering due

to the image force into account

(Xm is in the order of 109 cm).
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Thus, the potential is

fx
V(x) - J E(x) dx

- [ [N- (Wlx- x2 + N(W2  1 x +N+ W -W 2 )x]

16x

ml16 -I
S- n  (37)

L167r Tj x < w1

V(x)" [N(W 2x - x2 ) + N+ (W - W2)x] + 16x - -- Wi - x < (38)

-)- 2 + 6 B 1 x<W

n

V (4) f [el(Wx -2"1 x2)l + 161-- x --------- W2 < x< (39)

Thus, the image force lowers the barrier energy by an amount

cl16w x

3.2.4 One-Dimensional Schottky-Barrier Diode Finite Element Analysis 1 0'1 1 "2

In order to obtain the electron densities and potentials everywhere

inside the diode, one solves Poisson's equation and the continuity

equations. However, closed form solutions are apparently impossible when

nonlinear velocity-field relation is taken into account. In this section

we consider only one-dimensional cases and examine the details of the

static solution in a Schottky-barrier diode.
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9,10,11

The relevant equations are

- (n Nd) (40)

an " (we assume . ,,o) (41)

(42)

Jnqn a + q D Vn (43)

where
(,E

U- 
0 )3

Vn E (44)

Assume the one-dimensional structure shown in Figure 8 with the Schottky-Barrier

on the left hand side, a region with doping density, Nd, and an applied voltage,

V. We have elected to use the finite element method to solve this problem. We

divide the entire length into L +1 elements with equal lengths. There are L

nodes inside, and each element has length G ---- Vi ni represent the electron
L + 1

potential and density respectively at node i. If L is large enough, one can

assume the potential between node i and node i + 1 is

*i a i + bx i < i < L (45)

' ijmmalI
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Figure 8One-Dimnsiona*l Schottky Barrier 
diode with

L equally separated nodes inside.
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It can be shown that

a - [x ~Vi - xiVi+ 1] (4 6a)

bi W- [ + - VI (46)i-i

bi (46c)

a2'- 1 [b -b (46d)
ax 2 Gbi+1 i

Similarly, if V is replaced by n, we obtain the density between each node

as

-' i  C Ci + d i x 1 _5 1 _ L (47a)

1
Ci =.I [xi+ n i - x i ni+1 ]  (47b)

C (47d)

2 ii

I [C - Cl] (47e)

2______

- . ,I
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Substitution into Poisson's equation and the continuity equations yields

vi+2 + vi- 2vi+1 "-a G2 [(d - N (48a)

1(Ni +Ni+) n(Ei) (V 2 + V - 2V,+] (48b)

+ (ni+1i ni)un(E±) [- G (Vi+i ) -

+ Dn(E) 2 (hi+2 + n i+I) o

j where

3ip

E i L

G n
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We take the following parameters for GaAs.

P0 M 6875 cm2/v sec

v - l.lxlO7 cm/secs

E0 = 3.2 KV/cm

and apply the boundary conditions:

n(0) Nd exp _-1T (V0 -V)]

n(L+l) = Nd

V(o) = -V0

V(L+l) - -V

where V0= built-in voltage

V - applied voltage

Computer print out shows that the potential increases gradually from left to

right. However, the electron density increases very rapidly in the segment

nearest to the Schottky contact. The values obtained are plotted in Figures

179(a) and 9(b). It is noted that the electron density decreases from 10 to
14

10 , but that the usual depletion approximation n - 0 is strictly valid

only immediately under the contact. However, the potential distribution is

close to that under the depletion apDroximation; the difference being no more than
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5%. The electric field is nearly constant ( constant). Note that the

Debye length for this example is 1.89x10 cm.

3.2.5 Two-Dimensional Schottky Barrier Diode Analysis

Subharmonically pumped (antiparallel) diode pairs are proving useful as

millimeter wave mixers. Their primary advantage is that the local oscillator

frequency is half that of the desired signal, thus easing the burden on 100 GHz

(and higher) solid state sources. However, there are a variety of problems

associated with fabricating and mounting matched diode pairs in millimeter wave

circuits. We have conceived of the following fabrication scheme which may lead

to improved matching and packaging of subharmonically pumped diodes.

Consider the geometry of Figure 10 which shows an antiparallel GaAs diode

pair fabricated on a single N+ substrate. A Schottky metal, such as AL is

deposited over a portion of the substrate, and an N doped GaAs layer is grown

around and over it. Techniques for overgrowing metal layers are currently under

investigation at MIT Lincoln Laboratories and appear to be feasible. After the

desired diode thickness is obtained a second Schottky barrier is deposited and

an ohmic contact is applied to the entire upper surface completing the device.

Such a structure should be highly symmetric and uniform so that well balanced

I-V curves should be obtained. Furthermore, the millimeter wave parasitic

elements are all external to the diode pair, so that circuit balance should be

improved and impedance matching simplified.

In order to exploit these apparent advantages we have begun to analyze

the carrier distribution in such a structure to determine whether low leakage

resistance pairs can be defined and, if so, to obtain design data.

3.2.5.1 Finite Element Analysis

The equations needed for our analysis 
are 9' 10, 11
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Schottky
Barrier
contact

+
N N N+

Contact Substrat?

(a) Antiparallel diode pair configuration

(b) Equivalent circuit

Figure 10.* Two-dimenional Schottky Barrier diode and the equivalent circuit

=7I
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V2 c (Nd)

V- 0 (assume -L - 0)
n at

(49)

E - V

3n q nVn+qDnVu

where

"v0+ 1-- / EO, D n (E) - v (E) + 3 vn(E)V (j" --n n 2 n .

i+ EO0

Instead of solving second order differential equations it is possible to

reduce them to first order relations with the aid of a vector formula:

If V oV do -JJ V - J do (50)
/fq .) -ff (, q

We approach the numerical solution of these equations by means of a finite

element method. The first term on the right hand side will vanish if the ele-

ments with which we are dealing are inside the diode, and also vanish if the

boundary values are constant or the component of the current along the normal

of the bounday is zero. Similar arguments apply to the first term of the right

hand side of the following equation:

ffv.Vdn -ffV.(fVQn -ff fV 2 *do (51)

I * -
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So we have

-).

JJ Vf. q dn - 0

and

~f"V.VPd -_fjfS (Nd~d (52)

Now the two-dimensional device of Figure 10, when divided into a suitable

number of elements for analysis, appears as shown in Figure 11. Summing

over all elements for which j is a node, using

f -I J3

S= E i(53)

3i=l

yie"ds

V¢ O +  $~)ni -i n  dxdy =0 (

element i-l iJ0

with J

and

an if{ji) at + (V J). ¢inin + Dn(V)ni dxdy 0 (55)

element i-1
with j

where n 1  0 by our assumption.at
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y

21/

,~J j5

0 W

Figure 11. Application of linear function method to the
entire bulk region, using triangular elements.
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Since the elements are triangles, some properties 12about them are needed

in our analysis. See Figure 12. Take the origin at the cencroid of a triangle.

Then

1 3

1 (x1 + + y

1.~ y1 2 + Y3) - 0

f xdxdy - 0

f ydxdy 0 (56)

Jx 2dxdy x 2 + x2+ xc 2

J 2 A 2 2 2

y dxdy - 6 (y1  3

xydxdy - 12- (x~y + x~y + x y)

1 x 1  yl

where A-area of triangle- 1 1 x2  2

1 3  Y3

Define * (aj + bx + c y)/2A (57)
j i

where A -area of one element

1PQ

To find the aj, bip cj values, assume a + a ax + a
-41 2
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(x

\,,, .2., 
- x3-Y

Figure 12. Triangle with origin at the centroid
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Then,

S1 x yl 1q
t 2  1 x2  Y2 a2  (58)

L 3 1 x3  Y3 j a3

xx 1 l Jl

x 31 a 2  (1lx Y) 1 2  Y'2

3 3 1

- x y] i 2b b b (59

i 23 jJ (59)

1 2 3

Lc I c 2 c 3 3J

We can easily obtain bj, cj values from the relation above and it is understood
2

that in the centroid coordinate aj .- ! A - 1, 2, 3.

Two kinds of triangles used in analysis are:

i) Triangle 12j, j34, 6J5;

It can be shown, that for this type

bI - Q; b2 -O; b3 -- Q

c1 " -P; c2 -P; c3 -0

ii) Triangle j23, 5J4, 61J

It can be shown that for this type

b -Q; b2 -0; b3  0

cI- P; c2 -- P; c3 0



3-54

where P, Q is the length of the elements in x and y direction respectively.

After some manipulation, Poisson's equation and the Continunity equation

can be written:

elemnt[ 4i (ax ax~ ay ay 1 En +1 2n 3
with j

1 IS Nd 0 (60)

1 (n n + ) ( x + ny -!IayD()n
element[t  1 + 2 + 3  ( ax ay -, +~ nE

with ji

where

ao1  b1  ali b

ax TA' ax 2A

3y2 A ay 2A

v v nythe velocity in x, y directions, respectively,and

- 3 -

El"

4-. Ili
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vnx " U n(E)Ex; Vny - (E)Ey

Figure 13 shows a flow chart of the calculation.

With the aid of a HP 9825A desk top calculator, we obtained the results

shown. The potential distributions on the two boundaries y - 0 and D are

close to the one dimensional depletion approximation (for example: See Figure

14, (a), (b) node number 1, 8, 15, 22, 29 and 7, 14, 21. 28, 35), if we take

D > 2W. Some leakage is observed on a strip area around y - 1 D, in our results.

This phenomena might be improved by increasing the lengths of both Schottky

Barrier contacts a little bit such that two contacts overlap in y-direction.

3.2.6 Conclusion and plans for next period

We intend to pursue the analysis of the diode pair just described. Static

I-V curves will be predicted and a parametric study made on the effect of the

device geometric and material parameters. For example the overlap of the

Schottky contacts should increase the leakage resistance by changing the posi-

tion of the depletion regions. However, the capacitance between the diodes

will also increase. Small signal scattering parameters will be predicted to

examine the trade-off encountered in the design. Preliminary growth work to

uncover the problems in epitaxial growth over metals will be initiated.

.... .......
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Figure 14. An example of two-dimensional

Schottky Barrier diode analysis
using finite element method

Built-in voltage 0.90 volt
Applied voltage 0 volt

Energy Relaxation time 1.0O10-13 sec
Doping density 1.017 cu

3

Total number of nodes inside the bulk region 35

a.) Node Designation

0 1 8 15 22

. . Schottky Barrier
23' 3/ Contact

/, /
24 316 /1/ / /

4, V 25 32
0 /" /"/

x / 9 ,
Schottky Barrier 12 . ,

Contact ," /

I -

1

01/20 /27 3LL-A..I ,/

7/ 2 1 1/28 15 X

0lxl0 5 cm

Ji

I|*'-.



Figure 14(b). Numerical results (the first and last columns are

boundary nodes, the number from 1 to 35 is the node
number, respectively)

(1) potential distribution at each node

1 8 15 22 29
-0.9 -0.74 -0.58 -0.43 -0.28 -0.13 0

2 9 16 23 30
-0.9 -0.72 -0.56 -0.40 -0.26 -0.13 0

3 10 17 24 31
-0.45 -0.36 -0.28 -0.21 -0.13 -0.06 0

4 11 18 25 32
0 -0.01 -0.03 -0.04 -0.03 -0.01 0

5 12 19 26 33
0 -0.05 -0.13 -0.21 -0.28 -0.36 -0.45

6 13 20 27 34
0 -0.12 -0.26 -0.40 -0.56 -0.72 -0.90

7 14 21 28 35

0 -0.13 -0.28 -0.43 -0.58 -0.74 -0.90

(2) Density distribution at each node (unit: 1016 cm- 3: the zeros
on the first and the last column are actually 8.lxl0-15xunit
i.e. 8.1xi0-15x016 = 81)

1 8 15 22 29
10 9.9 9.5 8.8 7.6 5.1 0

2 9 16 23 30
10 9.0 8.2 7.4 6.3 4.3 0

3 10 17 24 31
5.0 5.0 4.8 4.9 5.3 6.3 0

4 11 18 25 32
0 1.9 2.4 2.7 3.4 4.6 0

5 12 19 26 33
0 2.8 3.9 4.6 5.0 5.4 5.0

6 13 2 734
0 4.7 6.7 20 7.8 27 8.6 9.5 10

0 5.2 14 7.6 21 8.9 239.5 35 9.9 10

- - i .



3-59

References

1. Sze, S. M., Physics of Semiconductor Devices, Wiley, N.Y. 1969, pp.
363-424, 111-115.

2. Keen, N., Haas, R. and Perchtold, E.,' Very Low Noise Mixer at 115 GHz,
Using a Mott Diode Cooled to 20 K, Electron. Lett. Vol. 14, No. 25,
pp. 825-825, Dec. 1978.

3. Cohn, M., Degenford, J. E.,and Newman, B. A.,"Harmonic Mixing with an
Antiparallel Diode Pair", Vol. MTT-23, pp. 667-673, August 1975.

4. Carlson, E. R., Schneider, 1. V., and McMaster, T. F., "Subharmonically
Pumped Millimeter-Wave Mixers", IEEE Trans. on Microwave Theory and
Techniques, Vol. MTT-26, pp. 706-715, Oct. 1978.

5. Kerr, A. R., "Noise and Loss in Balanced and Subharmonically Pumped
Mixers: Parts I and II", IEEE Trans. on Microwave Theory and Techniques,
Vol. 14TT-27, pp. 938-950, Dec. 1979.

6. Stillman, G. E.,and Wolfe, C. M.,"GaAs Electroabsorption Avanlanche Photo-
diode Detectors", Inst. Phys. Conf. Ser. No. 24, 1975, Chapter 4.

7. Ziel, V. D., "Solid State Physical Electronics",third edition, Prentice
Hall, 1976, pp. 283-309.

I

8. Schroeder, W. E., "Nonlinear Properties of IMPATT Devices", Technical
Report, RADC-TR-72-267, University of Michigan, Oct. 1972, pp. 1-92.

9. Barnes, J. J., "A Two-Dimensional Simulation of MESFETS", Technical
Report, RADC-TR-76-153, University of Michigan, May, 1976.

10. Yamaguch, K., Asai, S. and Kodera, H., "Two-Dimensional Numerical Analysis
of Stability Criteria of GaAs FET's", IEEE Trans. on Electron Devices,
Vol. ED-23, No. 12, Dec., 1976.

11. Yamaguch, K., and Kodera, H., "Drain Conductance of Junction Gate FET's
in the Hot Electron Range", IEEE Trans. on Electron Devices, Vol. ED-23,
No. 6, June 1976.

12. Zienkiewicz, 0. C., "The Finite Element Method", 3rd Edition, McGraw-Hill,
1977.

13. Mott, N. F., "Note on the Contact Between a Metal and an Insulator or
Semiconductor", Proc. Camb. Phil. Soc., 34, 568., 1938.

14. Hemisch, H. K., "Rectifying Semiconductor Contacts", Oxford at the Clarendon
Press., Oxford 1957.



3-60

15. Thim, H. W., "Computer Study of Bulk GaAs Devices with Random
One-Dimensional Doping Fluctuations", J. Appl. Phys., Vol. 39,
pp. 3897-3904, 1968.

16. Yamaguchi, K., Toyabe, T. and Kodera, H., "Effect of Field-Dependent
Carrier Diffusion on the Two-Dimensional Analysis of a Junction Gate
FET", Japan, J. Appl. Phys., Vol. 14, pp. 1069-1070, 1975.

I7
I
i

,11

t ..............................---.-*--



4. New Device Concepts

B. Abraham-Shrauner and M. Muller

4.1 Inertial Transport in Semiconductors - Introduction

In devices that use high-mobility, low effective mass semiconductors, the

mean free time between collisions of a carrier can become equal to, or longer

than an oscillation period, or the mean free path between collisions equal to,

cr longer than a typical device dimension.

Under such conditions the carrier transport in semiconductors is not gov-

erned by the traditional friction-dominated Ohm's law behavior. The motion of

the carriers for the short times or distances of primary interest for device

operation may be more accurately described by the inertial or ballistic equation

of motion.

An extreme version of such ballistic motion, assuming that the time between

collisions is long compared with the time that a carrier needs to traverse a

Brillouin zone, is discussed at length in Section 4.3 under the rubric of Zener

Oscillations. The questions addressed there deal with the limits of validity

*! of the effective mass theorem, tunneling, and similar concerns that arise in

the ultra high field regime of semiconductor transport.

Under somewhat less extreme operating conditions that are beginning to be

imposed on conventional but very small devices using extrinsic material, re-

sponse time and high frequency performance is also thought to be capable of im-

provement through achievement of inertial transport conditions.

The paradigmatic device for studying inertial transport is the short

space-charge limited semiconductor diode. Calculations of the behavior of such

1)diodes, without collisions, and with few collisions have been reported. The

work published to date has not yet taken into account several considerations

that may be important, on which we have begun work:

t *-*- - - - -.- *
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(i) an algebraic study of the uniqueness of the current voltage relation

(ii) a linear stability analysis of fluctuations propagating in the longi-

tudinal and transverse direction

(iii) filament formationfor current-controlled negative differential resistance

and its possible instabilities

(iv) finite carrier temperature and cathode electric fields

(v) the effect of non-parabolic band structure.

I,
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4.2 Ballistic Transport and Instabilities

by B. Abraham-Shrauner

4.2.1 Ballistic Transport and multivalued current-voltage relations

In this section the derivation of the basic relation for the electrostatic

potential as a function of distance from which can be found the d.c. current-

voltage characteristics is given. The derivation is included because our re-

sults and those reported in the literature '2 show some strange features that

may under certain conditions cause instabilities rather than a stable operation

regime for a device.

Our model is a low temperature semiconductor, for example GaAs at 77°K,

with a mean free path for collisions greater than the short length of the

device (.1 -1lm). Because the lateral dimensions are large, we use a one-

dimensional model with a d.c. voltage of .1 to 1 volt across the semiconductor

length. The energy of the electrons, the mobile carriers, at the cathode is

much less than their energy at the anode and is assumed zero. Since there are

a large number of electrons at the cathode in this space-charge limited regime,

the electric field is assumed zero at the cathode. Diffusion and scattering of

electrons are ignored; a steady-state solution is assumed.

The appropriate equations are

Poisson's equation

d2U -e(n0 -n) (1
;;2-- e . (dx2 £

where U is the electrostatic potential, p is the volume charge density, e is the

electronic charge of a proton, n is the electron density, n0 is the doping density,

e is the electrical permittivity in SI units and x is the distance from the cathode,

the equation of continuity

.... ...-.... . . ... . .. . . .. , .
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vJ - d- 0 (2)

for the current density and the conservation of energy
1 * 2
m v -eU - 0 (3)

where m is the electron effective mass _ .068m for me the free electron mass,e e

v is the bulk carrier speed of the electrons in the x-direction and the current

relation

J -env. -4)

The solution of the above set of coupled equations follows the solut'on

by Child3 and Langnuir4 for the space-charge limited vacuum diode that ga-e a

power law for the current density. The electron density in Poisson's equation2

is eliminated by means of eqs (2) to (4) in terms of the potential which gives

2rd2U :-e nO
d 2  e n0  e (5)

dx2

For mathematical simplicity and ease of comparison we employ dimensionless

variables.
U ,Wa UO M m_ 2

u 0 2e3n 02

0 ~2e 4n 03

j - -J > 0, - 0 e R' Then eq (5) becomes

d2u -d -u (6)
dw

The first integral is found by multiplying eq (6) by 4w dw and integrating,
dw

1 . w - 2 ru -u + C. (7)
du

The boundary conditions are u(O) - (0) = 0 at the cathode, x - 0. Thus C - 0.

dwI

.
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The square root of both sides of eq (7) gives a separable equation that can be

reduced to quadratures.

fdu

u~ w,1 0 <w < w4.(8)

The positive sign for is determined by the fact that the electric field points
-dU

from the positive anode to the cathode and E -d Then the integral can be

4
found by letting u' - t . The result is valid only up to w - inr/. At this

du 2 du
point w = 0 but- _< 0 there or for w > r/2, d< 0untilw-2n2. Thswdw 2  < nilww2 2 h

solution for u(w) given here as an implicit function is periodic.

w ( + 1) 7rV2 - w] 1_ (_,)]+ n v/2 + w + (_)n

(9)

*n nr2~ < w < (nx + 1)ir2-

where w0  -2 U'4( 2 -u") + 22sin'- (102-,:T(10)

is valid for 0 < w < wV2as solution and appears in the general solution.

This implicit function u(w) is not invertable analytically although one

may solve for u /2 in terms of a sine function and demonstrate the periodic

dependence of u on w. In Figure I the dimensionless potential u versus the

dimensionless length w is plotted for two periods. The cathode is located at

w - 0; the anode is at any other value of w that is appropriate. The curve is

somewhat misleading since u and w are larger for smaller currents. If the anode

is located at w - 2wrv, this predicts that electrons speed up and then slow down

to zero at the anode with no potential across the semiconductor. Such behavior
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is bizarre but no more than the cases where electrons slow down, then speed up etc.

In order to investigate this strange predicted behavior we first check the unique-

ness of the current-voltage relation. Both M. Muller (private communication)

and M. Shur2 have found multivalued current densities for some potentials. Since

multivalued currents are related to negative resistance which in turn can lead

to instabilities, we first check the range of the unique values of current density

for a given potential.

The range for which the current density is unique for a given potential is

checked here. For 0 < w < f/2 (we exclude the end points) we show that if

(Uit w1 ) are chosen so that w 1 is in the range just given, then there is no

other point (u2 9 w2) for which the potential U is the same but for which the

current density J( J sdfeet o tu oe q(0 n

obey

w 27r1/ + 2u 2 -u ) 2' sin -1 u21 (11)
2

for the range w/2 < w2 < 2wr2. We shall prove the uniqueness for this range of

w2 and then extend the proof. Now from the current density dependence of U.,

x0 we have

J2 w (12a)
J2

-I  11w 2 = "w2 (1a

J2 2  2u ---u u2 . (12b)
1I J 2-1 2Ji

Eqs. (10)-(12) must be satisfied if the current density is multivalued where

x - L is the device length in w1 and w2 and U is fixed in u, and u2 . We shall

prove that an inequality exists so that this set of equations is not satisfied.

We show that

iI

I ---
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27r V12 ( ul \ )

W- 2 - (2 2 2 -- ' Ul1

where eq (12a) was used for w2 on the left hand side wich w1 given by eq (10)

and eq (11) with eq (12b) for u2 was used for the right hand side of inequality

(13). We note that w M w0 (ul) , and find

w0a ) + w0  < 27/i 
(14)

must hold. Now any real u must be less than 4. For w0 with argument less than

4, w0 < ir/i. Hence, w0 ( )< w/2. Next we show

If this is true, then the inequality (14) follows. To show (15), we use a series

expansion 2 - sin-' from tables. We find for (5)
ul 2

if T 1

12

[ 2 1.3 . +1.3.5.12 T 1
7  T.. [ 3' 1.3.8T 15 1.3.5.12 T 1 

7 +

32+ 2.46. L 2.4.5a 2.4.6.7a 2 I
(16)

holds since a < 1 is required for w2 larger than wl. Since the first two terms

of the inequality in (15) are shown in (16) and the third is known, we have

shown (14). The proof can be repeated for w2 > 2wr/2 and one finds that an in-

equality holds also since the left hand side is at most that found in (14) and

the right hand side is equal to or larger than that found in (14).

On the other hand, if the point (wit ul) is chosen so that wr2 < wl < 2wri,

then multivalued current densities may arise. The condition for multiple values

I * -
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of current density is

2ir2+ (17)

if (u2 s w2) lie in 27rv2 < w2 < 3iv-i. The smallest w1 for which multiplicity
!u!

exists occurs when u2  -- 4. The ranges of w1 and w2 restrict a and then

eq (17 becomes for the smallest w

3 1 (4L2) (18)
2- 2w v20

2u
which is a transcendental equation. One can also plot the quantities - and21 w

The potential is proportional to the first quantity and the current densityw

to the second quantity where the new dimensionless potential no longer has the

current density j present. In Figure 2 we have plotted 2u and - where the2 w
w

current density is multivalued. This occurs graphically for smallest w 7.75,

u11.5.

The multivalued current density is associated with negative resistance as

can been seen from the negative slopes in Figure 2. The negative resistance

may give rise to spatial or temporal instabilities. We first analyze possible

temporal instabilities.

4.2.2 Temporal Instabilities

The steady-state solution discussed for the electrostatic potential in

ballistic transport may fail to exist because the initial state does not evolve

into a steady-state solution or because various instabilities occur. We consider

the latter possibility here. The approach for temporal instabilities used was

5 6first applied by Rowlands for cold plasmas and extended by Infeld . The mobile

carriers considered in the derivation of the ballistic transport current-voltage

'~1~* _ _ _ _ _ _ _
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characteristic are treated there in the cold plasma or beam approximation.

The stability analysis for finite temperature carriers is considerably more

complicated.

First, the one-dimensional stability analysis where all dependent variables

vary with x is considered. The electron carriers are modeled as a beam or they

are equivalent together with the doping background to a cold plasma.

The fluid equations for the electrons are

+ -L (nv) = 0, (19a)

3v + v e 3u -eE-v+ v--..... .* (19b)

at ax ax *'
m m

aU -aE -e (19c)
2 ax Cax

We assume a steady-state solution exists with fluctuations about the steady

state. The fluctuating variables are functions of position x and time t.

Each dependent variable is the sum of a steady-state term plus a fluctuating

term where the latter is assumed to be a small perturbation initially about

the steady-state term.

The perturbation expansion is

n(x,t) - n(x) + 6n(x,t) (20)

v(x,t) - v(x) + 6v(x,t)

U(xt) - U(x) + 6U(x,t)

E(x,t) - E(x) + 6E(x,t).

The steady state equations are

v 0 (2a
4
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v av e aU eE

ax - x - -' (21b)
m m

a2U . (- je (21c)

ax2  ax C

Eq (21a) for density is equivalent to the continuity of current relation, eq

(2). The momentum flux equation (21b) integrates to the conservation of energy

equation (3) and eq (21c) is just eq (1).

The equations for the perturbed variables are

-+a nv)n = 0, (22a)

6v + 6v + v e Mv (22b)

at ax ax - ax
a U -ne (22c)

ax2  e

The stability of this system is tested by assuming a harmonic dependence in time

exp(-jwt) and by solving for w. If the imaginary part of w is positive, the

system is unstable. As the steady state is a function of x, the quantities

n, v vary with x. Therefore, the usual expansion in a Fourier series in x of

the perturbed variables will not do for this problem. A variable change is

introduced that renders the equations more tractable. New perturbed quantities

are defined that enable us to pass to a new variable T, the trajectory time

for a fluid particle, that replaces x and removes any explicit dependence on x

in the equations. Then one can expand the equations in a Fourier series in T.

The perturbed variables are

S6 = n6v + v(n,

6n MEv6v. (23)
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To pass to these variables multiply eq (22a) by v and eq (22b) by n and add the

results together. Next change to the variables in eq (23); multiply eq (22b)

by v and change variables. The two resultant equations are

6 + + 1 n ;E,(2e4

m

and

+ - " . -e E. (24b)
at ax 'i m

Then multily eq (24a) by v/n and subtract the result from eq (24b). Take

the x-derivative of this equation, multiply by n and add this to the time

derivative of eq (24a). Finally multiply by v and we find

2 2 (-2 J) _3 a 6 -e 6E
o + 2 ++en 0 oat" (25)at 2  axat >at ax( m*00

We next alter eq (25) by first noting the result from Maxwell's equations

96E =e68 (26)
at

Secondly, one term is replaced in eq (25) where

a-3 a -LV a (V-S) - (;- (27)3xTX B =  ax ax x2  2
ax ax~ aax

9~2 -2 + 2 e 2where a2  a --. e n 0  n , (28)

ax2 2  ax- m *

by eqs (21b)-(21c). Then eq (25) becomes

a2  +2 2  2
(vB) + 2 (O6) +- (29)

9T 2ata at2 vO p V0

where v ,7- andax aT

Xfdx'T f ;( , TL - '(L) andJo v(x )

fiflh - ll/I/II I
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22e

(PO 2  
e 0

p =---- is the plasma frequency squared.m 0

Also

-2 a - a =266 )

v -t 5-t 2

The eq (29) is a linear partial differential equation if ;68 is the dep-

endent variable. A Fourier expansion in T is possible of v68.

va - I Bn exp [J2 TL . (30)

If we employ the harmonic dependence in time, eq (29) simplifies and the con-

dition for nontrivial solutions is

( tn 2 2 (31)

From this relation for the frequency w we see that it is real or the steady-

state solution is marginally stable if fluctuations that vary in x are allowed.

This result was also found by Infeld for a traveling wave in an electron-ion

plasma if terms of order of the electron mass to the ion mass are neglected.

Infeld and Rowlands7 considered transverse spatial variations in the

fluctuating quantities and found, in the absence of particle trapping, that

the system is again marginally stable. As a result we exclude any simple tem-

poral instabilities.

4.2.3 Negative Differential Resistivity and Spatial Instabilities

The current-voltage curve for ballistic transport shows multivalued current

densities for some values of potential (d.c. voltage). The slope of the current-

voltage curve then may be negative for low values of potential and current density.

See Figure 2 for the range of negative, resistance.
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Ridley8 has discussed the effect of differential negative resistance and the

instabilities associated with it. The current density-electric field relation

is fundamental in his discussion. If different values of the electric field

occur for a fixed current density, the differential negative resistance is

called voltage-controlled; if different values of the current density occur

for a fixed electric field, the differential netative resistance is called

current-controlled. For the ballistic transport in semiconductors the curve

for the current density versus the electric field is plotted in Figure 4. We

see that the differential negative resistance is current-controlled.

The range of multivalued current density as a function of the electric field

need not be the same as the range of multivalued current density as a function

of the electrostatic potential. If for the ballistic transport case the pot-

ential is fixed and two values of the current taken, the values of the electric

field will, in general, be different. We cannot rely on the current-voltage

curves for the current density-electric field multivalued cases.

The electric field is E -- d for the magnitude of the one-dimensional
dx

electric field intensity. If we consider the dimensionless electric field

du .Xo dU (32)
dw U0 dx

du
where x0 and U were defined above eq (6). A plot of du versus of w is given

d0

in Figure 3. The value of .4 is next assumed fixed and we vary j in x0 and U0.dx 0 0

Then we have

du /\ du w 1 (3
dw (wJ T_ ( 2) 2 E2

where we have introduced E1 and E2 as the dimensionless electric field. Next

dU
we keep T-, x - L and the other semiconductor parameters fixed e. cept for the

ix

an
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current density. Then a straight line is drawn through the points wv, E1

and w2, E2 . This gives

E av + b v(

1 aw1 + b w I

or b - 0. Hence, a straight line drawn through the origin and one point of the

w - E curve intersects any other points that have the same electric field. In

Figure 3 such a line is drawn such that the smallest w for multiple values of

current occur. An analytic condition is possible also. The smallest value

of w, called w, here, is less than w/i. Hence, the multivalued current density

occurs for smaller w or larger current density for the electric field than for

the potential. This result can also be seen in the plot in Figure 4. Here a

dimensionless electric field for fixed x - L and independent of current density

is plotted as the abscissa -/ w; the dimensionless current density is plotted

as the ordinate 1/w.

For current-controlled negative resistance filament formation is predicted.

These can form in some cases a new stable state 9 but the spatial instability

that leads to filament formation destroys the one-dimensional approximation.

Spatial inhomogeneity in the transverse direction exists. In addition, if the

negative differential resistance is placed in an external circuit, stable

filament formation is difficult to obtain in practice, as Ridley pointed out.

In conclusion, if a cold plasma or beam approximation for the electrons is

employed, the regime of likely device operation for ballistic transport seems

to be for w < w/j, u < 4 and the smaller voltages and current densities (larger

u and v) are probably unobtainable.

4.2.4 Finite Temperature Effects in Ballistic Transport

The effects of finite temperature on ballistic transport could be important
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as device voltages are reduced. The model just discussed can be corrected and

the infinite carrier density at the cathode removed. Temporal instabilities

are affected by temperature but here since the cold system is stable, one

expects the warm system to be more stable. The work on the finite temperature

corrections has just begun. A preliminary calculation has been made where

the usual ballistic approximations are modified by assuming that the electrons

leave the cathode with finite energy. A calculation with a one-particle dis-

tribution function would give a more fundamental picture, but for low temp-

erature probably does not affect the results much.

The derivation of the finite temperature correction for initial beam

energy proceeds as before. We replace eq (3) by

1 * 2 1* 2v eU= - (35)

Poisson's equation becomes

dx2  e~~V
dx-= [n o - m ~e] (36)

In dimensionless coordinates we have

du 0 j - e no0 v0  (37)
dw2  2/ 00

where V is the initial carrier speed at the cathode and v0 the effective carrier00
speed if the current density were to have the doping density n0. The only dif-

ference between eq (37) and eq (6) is the replacement of u by u + V0i).

/0

We therefore can integrate by a translation of u and find for 0 < w < rIthat

Ar
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+ 1 - u + 2
4V-[4(+ -) - u- sin- ' ) < 1.

(38)
V0

For small -, the likely case, the value of w is not altered much. The solution
V0  V

does not exist for- - 1.
V 0

I
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4.2.5 The Effect of Non-Parabolic Bands (M. Muller)

In a device that operates in a collision-free, or nearly collision-free

regime, the carriers that contribute to the device current reach energies

corresponding to the voltages applied to the device. In small and fast devices,

these are of the order of one volt. In most semiconductors, especially those

with small effective mass carriers, the bands depart from parabolicity at

energies well below leV. The effective mass generally increases with energy.

Thus the current is smaller than one would predict for a parabolic band structure.

To assess the magnitude of this effect, we use the conduction band structure

of a model narrow-gap semiconductor as computed by two-band k.p perturbation

10)
theory Such a model can provide a fair approximation to the real band struc-

ture in the vicinity of the conduction band extremum.

Assuming a direct-gap semiconductor, and placing the zero of energy at the
a

conduction band minimum, the theory gives the hyperbolic band structure

2
1 + 12 ht39)
f C 9g m*E g(9

The theory also provides a relation between the effective mass m* and the

bandgap 9 g, but for the present purpose these two parameters may be chosen in-

dependently, for instance to fit a measured band structure.

To obtain the carrier velocity as a function of energy, we use
2k2 + 2h2k2 ) -1/2

-- h '1 +- (40)
k m* m*g

and then solve eq. (1) for k

2 2m* (

k +

ii2 _ _ _ _ _ _(41)__ _ _ _ _ _

----
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Substituting this in eq. (40) gives

I-- h(E+ 2 /2

Tk m* 1+2 /c

2
C

+2

- 2hv g g
s 1+2e/cg

(2m*v 2+E )
- hv - 2 (42)

s

where we have defined a band-structure limited velocity

v= (e /2m*) I / 2

ggFigure 5 shows the current best plot of the GaAs band structure 1)with both

eq. (39) using the experimental e and m*, and a h 2k 2/2m* parabola superposed

on the plot. The hyperbola of eq. (39) is evidently a much better fit.

The Poisson equation for a semiconductor uniformly doped with no donors/cm
3

carrying an electron current density J is

d2 V _ qn 0 + J

dx2 e C Cv (44)

where e is the dielectric constant and v is the electron velocity.

Electrons injected at x - 0 acquire a velocity

1
v -h3k (45)

when their energy e - qV E

Using the band structure gradient from eq. (42) brings the Poisson equation

into the form
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2 no+(m*v2+)qq 
(46)

qn,= + s-q
vs (2mv 2 + 2 )21/2 (46)

where a prime denotes d/dx. Eq. (46) can be integrated once to give

(0,) )2 0 2Ja ( 2+2m~v1,)l/2 2q2no- ev s 47
s

Assuming space charge limitation 0'(0) = 0, and changing to reduced variables

U 21/2X (48)
2m*v2  J =qnoVs (em*/n 0 q2 ) /2v

we can write the diode equation, the integral of eq. (47), in the form

f du[j(u2+u) -1/2 (49)

0

where u - v (V = V0, the applied voltage) at X - £ (x - L, the diode length).

The normalized variables are:

Diode voltage in units of 2m*v 2/q--four times the kinetic energy the
s

carriers would have if their effective mass were constant at the band

edge value, and they were moving with the limiting velocity vs; if the

k.p perturbation theory is taken literally, this unit is equal to eg/q;

Current density in units of qn v -the current that would flow if the

mobile carriers from the doping were moving with velocity vs;

Diode length in units of v T , with T the plasma oscillation period ofs p

the semiconductor.

Curves of current density versus voltage are shown in Figure 6 as full

curves. For comparison the current density-voltage curves one would compute

assuming constant effective mass are shown dashed.

We have not extended the diode characteristics into the low-current region

at the lower ends of the curves. The problems encountered by modeling this

-I i-'-
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operating regime are discussed in section 4,2,

The vacuum diode analog 3/2 power law holds only for V0  C , and then

only for £ z 1. That means very short diodes-for GaAs with n0 - 1016 shorter

than 0.25um. The limiting higher voltage behavior is J aV rather than JCa V
3/2;

the J-V curves bend over.

In the typical size and operating voltage range of GaAs devices the cor-

rections indicated here appear significant but not dramatic. They are likely

to be rather more important in devices made from smaller bandgap, lower m*

material.

9-W
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4.3 Zener Oscillations

M. Muller

4.3.1 Introduction

C. Zener, more than forty years ago, pointed out a curious feature of

the dynamics of band electrons which could, in principle, lead to a high-frequency

oscillation.

In the absence of any other interaction, the motion of a crystal electron

in a steady electric field follows the law

b k -qE, k Et

That is to say, the electron describes a rectilinear trajectory in the extended

Brillouin zone of k - space. Since the energy e is a periodic function of k,

and the velocity v is

--

h~ 'k

the trajectory of an electron wave packet is oscillatory. The period of the

oscillation is the time required to traverse the reduced Brillouin zone

27 * 2rh 4.lxl -7

a, aqE aE

where a is the lattice parameter in A, E the field in v cm and the amplitude

of the oscillation is

fvdt -fedt - k cdk

osc flhfik*' R qE
f f

half cycle band

*We assume for simplicity that the field is applied along a principal lattice
vector.

L. - ... . , - r I -" !
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where A is the width of the energy band.

This elementary description of the phenomenon is quoted from the pro-

posal for the present project. We also commented that Zener recognized at

the time that competing phenomena would rule out the occurrence of such

oscillations, and that there had not been any report of an unambiguous experi-

mental verification. It appeared possible to us that progress in materials

technology had reached a point that would justify a more detailed study of

the phenomenon.

The eventual objective of studying Zener oscillations is to utilize them

in a device for the generation of submillimeter radiation. The manifest advan-

tage of such a device would be its ability to use a uniform steady electric

field as a source of power, and its direct voltage tunability. The form that

a device would take is not yet clear; our effort at this point is focused on

the feasibility of observing the central phenomenon.

Zener oscillations are a special form of charge transport in crystals.

The reason why they have not been observed is generally believed to be carrier

scattering. (It has been argued that Zener oscillations might not be observable

even in the absence of scattering; we will comment on this controversy at length

below.) Very recently collisionless carrier transport, called "ballistic" or

"inertial" transport, has attracted a good deal of attention2 ) . It is believed

that "conventional" devices, such as short-channel FET's, may be capable of

superior performance if the carrier transit times are made short compared with

the mean time between collisions. In consequence of taking a viewpoint sug-

gested by the study of Zener oscillations we have been able to contribute to

the theory of ballistic transport in thin layers of semiconductor. The

fA
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contribution appears elsewhere in this report. Here we shall discuss those

topics bearing directly on the oscillations:

The range of validity of the effective mass approximation

Tunneling, interband transistions, and the Stark ladder

Scattering

This last topic is at the heart of transport theory. In principle the

theoretical apparatus for a description of high-field transport is in

2a)existence, but its application to device electronics is not yet a reality

We should like to devote some serious work to this area, but we are not in a

position to begin such an effort within the scope of this project. We will

look at scattering phenomenologically; such a viewpoint is probably adequate

for our purpose. It does appear appropriate, however, to discuss the first

two topics in some detail. Much of this discussion is tutorial, but surpris-

ingly some aspects of the dynamics of crystal electrons are still contro-

versial.

AW
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4.3.2 The Effective Mass Theorem

We can start by looking more carefully at the equations on p. 4-28. They

are a curious mixture of classical and quantum dynamics. The classical view

is implied in the integration x - fvdt; the quantum mechanics appears in the

wave vector of the electron and in the band structure.

The approximation on which the equations are based is to regard the

crystal electron (or hole) as a particle with a (tensor) mass

M* ij 2 ak i3k

This implies that the motion of the particle is described by a Schrgdinger

equation giving, for example, hydrogenic states for a coulombic defect, or

as another example, scattering that can be qlculated by perturbation theory;

and, through the correspondence principle, classical behavior for suitably

constructed wave packets, with a velocity

1 aE-vi i - i

and dynamics

t i= q(! + -Vx .c

One expects this classical dynamics to describe, for example, cyclotron

resonance, and acceleration and mobility in slowly varying or static electric

fields. Thus the usual theory of mobility starts with

m - fv •- j ,r f dt f dt T 7kT d t
-hJ 0 3k

- k ~ [£k + t) E-ko]

Ic0  qE o iko0
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If the electron starts at a band extremum, where

_ 2 (_0) 2

e (k-k0) 2 2, then

02 2m

g2(q Et) 2

r~) h qE t2
2m*qE 2m*

This is the motion until the carrier is scattered--the inertial or

ballistic motion. The usual

m*

results from averaging over scattering lifetimes when <T> is much shorter

than any other time interval of interest.

When the scattering lifetime is long, the inertial motion continues, but

the carrier reaches energies where the energy must be described by the full

band structure rather than the parabolic approximation valid near an extremum;

the resulting motion is the Zener oscillation described on p. 4-28.

To assess the validity of this description, it is necessary to examine

the theory to see where approximations are made, and how they might be expected

to fail.

The starting point is the one-electron approximation.' This discards

questions of correlation, plasma oscillations and other effects important at

high carrier densities.

The one-electron wave functions of the infinite perfect crystal are

generated by the periodic potential Hamiltonian

H



4-33

2 V2

with Ho  V + V()

V(r+71) - V(r)

where Z is any lattice vector, and they are of the Bloch form

i.¥=u,; e

In these equations, n is the band index.

When there is a field present, the Hamiltonian is H - H0 + U, the

Schrodinger equation is

(Ho+U) 0 - i I0 at

and one can attempt to write the wave function as a wave packet of Bloch

functions

,(7 t) - n a( ', t) ,a()
n,k

Rather than substituting this expansion directly in the Schrodinger equation

and solving by perturbation theory, one can take advantage of the periodicity

of E (k) to transform the equation; since we can write
n

ECn( ) - _ f '

where

k

_ _ _ _ _ _ _ _ _ ___ _

______r_____________'--__'--____________I_____I gli " il*l



4-34

the energy can be formally represented as a function of the momentum operator

by replacing k in the Fourier expansion by the operator - i grad:

Note that the operator exp(T.V) translates any function of position by the

lattice vector t:

e Vf(-r) - f(7+T), so that operating on a Bloch function

Cn (- 0), -e n C+>

We can use this to evaluate part of the Hamiltonian acting on the wave packet.

H I (V+U) a (k, t)a (' -
0nnk

__~ 4- I EnkUa.n(k', t) (7r)

nk

F'[Cn( - i V ) + U ]  an(-k). () i -h 2a- I

n

This looks almost like a Schrodinger equation for the wave packet not involv-

ing the periodic lattice potential, except the kinetic energy operator

C (-iV) is not outside the summation over bands.
n

One obvious way to deal with this difficulty is to assume immediately

that the motion of the electron is adequately described by using Bloch func-

tions from one band only, thus
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r,t) - ak, t)0iPi()

giving immediately

H - [Cn (-iV)+U]4 - ihp.

The identification of C (-iV) - ( ) as the kinetic energy operator then
n n '

completes the effective mass acceleration theorem, but the approximation dis-

cards any possibility of band mixing or band-to-band transitions. Since these

effects are of primary interest, we must use better approximations. Actually

one can do a little better without the one-band approximation by using Wannier

rather than Bloch functions to construct the wave packet. The Wannier func-

tions are (maximally) localized functions defined by

, -) =N-/2 eik'*',(7
n nk

so that

- N-1/2 eik*-~n(r) = N e nW -T)
nk n

Each Wannier function is centered on a lattice site; unlike atomic orbitals,

Wannier functions on different sites are orthogonal

ik-Z -ik'.J' dn'n
r *77 (r-T) dr e ee~ *~f nnd

, __ )
n n Ni'*'T':' -1

k

The wave packet is constructed as

fn~~t C" t)w r

'L
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that is to say, a separate envelope function is defined for each band.

From here, the standard method of perturbation theory is followed. The

wave packet is inserted in the Schrodinger equation (Ho+U) - it$,

the equation is multiplied by w*,(7-l'), and integrated over the crystal

n
fdrW*, Cr-Z' (H +U) W (F_) f(,t

but

H w (7-T) - -/ 2  ei ' -

k

g -1/2 r e-17'-n"j )¢

n nk

' n -_ w C

giving

'C +U iff W n( t)
nn nn t

with

UnnE w*L') :f-*( )unr w (-r)d-r.

The envelope function f (L) up to now has consisted of a discrete set ofn

numbers, one for each lattice point, but it can also be viewed as a continuous

function which, on the lattice points, takes on these numerical values:
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f(1) - [f(7) ]7¥-

n n r-

With this viewpoint we can use

C f- - 9,)- e (-17)f~r)

on the first term in the difference equation above:

Z nn' I :n,T-Tl'fn
( -k t) E n, I T-tf n' (' t)

[Cn,(-iV)f ,(7,t)1 I

and substituting this result we obtain

n =. 1 nn n

[e ' -iVf l~r01= T + U nf (7',7) fn(Ttnf

=it n
at

This is a set of coupled Schrodinger equations for an envelope function in

each band; and these wave equations do not involve the periodic crystal

potential. From this formulation we can see explicitly how band mixing

comes about: to have UnnI appreciable with n # n', U must be rapidly varying
-nn

in space (i.e., the field must be large). There is no restriction on the

size of the wave packet, as given, say, by the shape of the envelope function

f. Furthermore, of course, there will be requirements imposed by energy

conservation which are not reflected in the interband matrix element. A

Putting band mixing aside for the moment we see that either of the equa-

tions we have deduced

1 4 _ _ _
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n n 1n

(-:Lv)+ E U m(',l n -illf
n n

describes a quasi-particle which is called a crystal electron. Indeed the

two equations are nearly identical. If U is slowly varying in space, the

matrix element of U for Wannier functions on different sites is very small

and one can then say U nnZ - U (7). The equation constitutes the effective
nn n

mass theorem for the crystal electron, because it provides an expression for

the kinetic energy in terms of the momentum operator -iV, and therefore

for the Hamiltonian.

The theorem can be extended to allow for magnetic fields. It is found

that in the presence of a magnetic field the Hamiltonian is

H = [-iV- -X(r,t)]
n -c

where the fields are found from the potentials by

B VxV , E 1A l VU.c t q

Since we will not be concerned with magnetic fields, we do not derive

A 3)this result here; it was first reported by Jones and Zener

To exhibit the meaning of the theorem, we apply it to the dynamics of

an electron at the bottom of a parabolic conduction band. Here

C(k) hk 2/2m*, so

e(-iV) 2 V 2
2*• €c(-iV) =- 2-'- V2

2
H--- Ur)

2m,
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and the crystal electron acts like a free electron of mass m*. Then invoking

the correspondence principle, we can say that in the proper classical limit

the crystal electron will behave like a particle with the corresponding classical

Hamiltonian

that is to say, its dynamics will be described by the Hamilton equations

r7 - T

These equations are, explicitly

showing that indeed p hk is a "classical" crystal momentum, and

- - _ _ (- JE

where we assume that U is an electrostatic potential.

The classical correspondence holds up only if the classical particle

has the same trajectory as the center of the wave packet, and preferably

the wave packet should hold together fairly well. Since the Schrodinger

equation is dispersive, this requires restricting the range of k.
i 44

The last consideration suggests that for this classical limit it will

be more convenient to construct the packet from Bloch functions than from f
Wannier functions. So let

WG)_ - e ' )(, en' U (r). e 0 .n(r)
0 0
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1 a(kt)ei(k -)r *li (7)

that is to say, we assume as will usually be true, that the periodic part

of the Bloch function varies little with k. To justify this approximation,

consider the wave function from the LCAO viewpoint: if we remain confined to

a small region of the Brillouin Zone, there is no reason why the linear com-

bination of orbitals making up Uk should change much. If a(kt) is small

except for k near k0 , then

F(r,t) - a(k,t)ei  -  r

k
contains only long wavelengths and hence varies slowly in space. Therefore

F(r,t) is nearly constant over a unit cell, and

- P(7. t) ,)o(T)

To obtain the wave equation we work out

cn (-iv)p - n (-iv) F(, t) io (r)

c -- 'F (rt) *eI o (r)

- at

.r e.of nOi)t oi)Fr

and H4 = it 0 becomes an effective mass equation for the amplitude F:
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[Cn (k -iV)+UG:)]F(T,t) - -ii F7,).

Furthermore, since F is slowly varying, VF is small and the leading terms

of a Taylor expansion of en about k 0 are adequate. It is worth noting that

this is valid everywhere in the Brillouin zone, not only at a band extremum:
Den 1 a 2n

e(k 40 ) e (0 )+k n + - kk n k +....

n 0n 0 1 ik k 2 3 iA d kdi 0

121E noo o "-k 0 )+hvh 0 -- ih(-)J~ ....
and so

1(k)V jh2 82

n(ko-iV) n 0k O ' - 2 (m*(k)) ii xi a + .

away from a band extremum, the first order term must be included.

We can now obtain the quasi-classical equations of the crystal electron

as equations of motion for expectation values. We need the normalization of

F:

12fFI2Iu 1 2 - )I2 2 d

d,,i$,r-T unit cell 0

e' t 12 f, F (r, t),I 2d-r;

Therefore the quasi momentum has an expectation value

iF 1 ~- i e" -:k-').r

<P> i.JF*pF V E a*(-'kt)a (k" ,t) tk" e r

Since a(k,t) is appreciable only near -- - ko), we can choose k o(t)

and get, for the crystal (pseudo) momentum

21 1_1'__1______
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<F-> - h k 0(t), and

->- <[lip]> - UF

-* ( )- M)UFr

- fr*(VU) Fdi' -<v>

Similarly, f rom

-er-b < nh'l> < (P- 7

we find from a Taylor expansion of 6 about k-

< 0>

thus verifyinghk n-VU+ VB
C

To sun-rize the exposition up to this point: We have shown that the

effective mass theorem, in the form in which we have used it in the theory

of Zener oscillations, involves two approximations: The neglect of inter-

band coupling, and a restriction of the wave function to a small region of

the Brillouin Zone.
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4.3.3 A Static Test of the Theorem

Before we proceed to an examination of the role played by these approxi-

mations in transport theory, it is instructive to consider a static example
4)

which demonstrates that the uncritical use of the effective mass theorem can

produce grossly wrong answers in an extremely simple context.

It is quite customary to use the effective mass theorem in the discussion

of the hydrogenic states of a Coulomb potential, as on a shallow donor. This

is a time-independent problem so ih el p , and the appropriate wave function

at the center of the Brillouin zone (0 0) is
0

*approx - F(7)'nO (7) - F (r)

With a periodic crystal potential V(r)

2
E2 - + Vnr u 0 ) u 7 )

2
23, + U(7) ]F('T) n-

where U(F) is the coulomb potential, and E-En0 is the binding energy of the

donor level in the effective mass approximation.

We can test the combination of eigenvalue and eigenfunction by a type

of self-consistency argument. Let us postulate a potential Veff such that

:1

S2m Veff) =O "

If the effective mass theorem were exact, it would require Vff -V(r r

We can test the theorem by evaluating
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A <V(r)+-v >
eff

-f drF*Uolv+UVff IFU.

This is carried out easily:

VffFU 2 - F

2
V(7))Fu - Fu-F -)- u

2
UFu - - )Fu -u ~-Fn no n n2m*

so

2 2 2
(VI7)+U-Vff)Fu- F P-u-u 2-F + L-Fu

eff 2m n a2m 2m n

We can work on the last term

p un- p(pFu ) -P[Fpu n+(PF)u n]

-(PF)(pu )+Fp 2u21+(p 2F)u21+(pF) Cpu)

4 1 2 1 2 2p)pu- FPP Fp u [p-2(p)p 2-1 pF

and

1 2
(V(r)+U-Vff)FU (pIF)(pu )+.p F

1 2
-p F2m* n1
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so finally

A a f ,,, [CrF1, unp 2 F (PF) (PUn

n 2m 2 2 1

f[l- 2) F* F +- (F*PF) (u* uf *2m m n n

Note that this gives the expected result A - 0 for the "empty lattice" where
m* - m and P no -ihVu no- 0, but with slowly varying F

d F* 2- F u*u F* 2 F d Un*U F* 2 F Cr.

2ma n 2m f n n f 2 mdr
Xal cells cell Xtal

This asserts that the first term in A is just ( - ) times the kinetic energym

of a particle of mass m* and wave function F(r), equal to the same factor

S-. 1) times the binding energy. The second term, to the same approximation,

is zero from symmetry.

Since it is known from experimental results that the effective mass approxi-

mation is quite accurate in predicting the binding energy, this result indicates

that the wave function is poor: either the assumption that a narrow range of

k suffices to construct the localized orbital, or the neglect of interband

terms, must be invalid even for these shallow states which are normally viewed

as one of the major successes of effective mass theory.

.1*' i
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4.3.4 Motion in a Uniform Electric Field

We now proceed to a detailed description of the collisionless motion of

a crystal electron in a uniform electric field. This is a sufficiently simple

problem so that it is surprising that it has ever been controversial, and that

some of the controversy is apparently not completely resolved.

The physical core of the difficulty is this: When one accelerates a

carrier, one might suspect that the carrier has to move some finite distance

before it "finds out" what its effective mass is, i.e., it has to sample enough

of the lattice to "learn" what the periodic potential is like. So one might

guess that the classical motion with mass m* takes some finite time to develop.

In one rather obvious sense this crude formulation of Eherenfest's theorem is

confirmed in optical band-to-band transitions, where the interaction Hamil-
tonian involves m and not m*. (The effective masses m and m appear in the

Sn p

transition probability because they describe the density of initial and final

5)states, not because they are involved in the transition kinetics

When the perturbation is a uniform electric field, a formal resolution of

this question is obtained by writing the Schrodinger equation in a momentum

representation that explicitly separates the intraband and interband parts of

the Hamiltonian. We have

2Hi- H0 'I, H0i- + ) '--E .

The eigenfunctions of T0 are Bloch functions
0

H"--ik-r.4 0wk en(k) Oki 01nk - e unkr).
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Consider the operation

iqe ikr EVkd--ik'r iqE.Vkonk-- T' -

This permits us to write the Hamiltonian as

H - Ho+iqE.Vk-iqe E.V ke-ikr

and the Schrodinger equation in the (crystal) momentum representation as

ib - e n n(k-)+iqI.Vk-iqe ikrE-Vke-ikr

Now we allow k to vary with time, and we shall see presently that the second

term on the right hand side of this equation gives only the acceleration within

a band, the third term only interband effects. To demonstrate this, let

e k(t ) . _ t= e u n (-(t) ,r-- e e n

and consider as a first example a free electron with V(r)=O, u =ir)ul; then

Idk-\ ( 2 k2
i~t~ t~i 2m - q-

(since the last term on the rhs EV ke-ik*r 0).

Thus we can identify the acceleration term ik - qE.

For a crystal electron

-- idk -, u dt k V ik-r* E.A t
in$ = [ an n h T k' nildt knklei e - n

= (u -q U--+iqE.Vku]e e n n
nnk nk k nk

-iqe ikrE.Vke-ik" ,
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So if the last term does not make any contribution that changes k, we again

have hk - qE.

To establish the last point, consider the matrix element

ik'r- e -ik ' r -
<nl1E' e E-7 k e Ink>

u*,,ijle' k'"- ku. -- R n.R
nk n

The last equality expresses the fact that, since u*,iVknli has the

periodicity of the lattice, the matrix element is zero unless kIk', so it only

links states of the same k and does not accelerate the electron; it does induce

interband transitions and polarization, the next topic to be discussed. For

the sake of simplicity, we have neglected the changing kinetic energy of the

electron in the wave function; we now repair this deficiency, to begin with

by writing for 1P a one-band Houston function6 )

t
Li fnk(T))d- ik(t)'r uO(),)e ?i eu n(k(t),F).

0

When this is substituted in the momentum-representation Schrodinger equation,

we again derive the acceleration theorem (omitting the interband term):

ih 1- cn(kt)u .ik-r

[(1 U(-i)fou +iq• (iruU
Cn~o)un+iqE0 n Vken n n

Here on the rhs enk " ( 0) because it is the eigenvalue of then no0

H
.1i
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time-independent equation H 0 E. Using the result tik qE selfconsis-

tautly, this can be rewr:itten

n 0 ~o~ n +ik j k ditd _q. un- n .kua
0

(_o())u+Cc t))-F o)  -4.F u++h.vi ui

n 0n n 0 an kn

The one-band Houston function is not an exact solution of the wave

equation. If we want to evaluate the effect of the interband terms, we need

an exact solution, which we can write as an expansion (for simplicity in one

dimens ion)

h fn(k(r))dt ik(t)x

tnWe 0e U (k(t),x) - Ean n .

n n

Substituting this in the Schrodinger equation produces

ih 1(aInn umaec(k)+iqE~ a~
Ti 4 % =Fa' *n'l n

-iqEe ix1  Ta
Tane

n

where we have cancelled the terms that we have just shown to be equal from

the acceleration theorem of the one-band Houston function. Carrying out the

indicated differentiations on the right hand side gives

± c (t)-c (0) aul

nc ~~dT n n n n nia~
ih a nu e -li -iqE E qE -u n a

Sn 0 n

• i efndO

0~
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Multiplying by u* and integrating over a unit cell
m i t

ih am -qEE aXe -mn(En-em)d
n 0

where

x -i u* dx

is the dipole matrix element.

If we start out with an electron in the Bloch state Ink> as defined in

zero field, this has the usual interpretation: the field, which is turned

on at t-0, causes rapidly varying terms to appear. The velocity

<v>- h - *1 dx also oscillates rapidly, with frequencies (e -e )/tmj ax m n

about its average value

v h 3k k-k + t
0 th

We will come to a physical explanation of these oscillations later.

For the present we note that they make it possible to satisfy Ehrenfest's

theorem according to which at t-O we must have <v> - SE with m the
m

free-electron mass; this is proved in detail below. For a Bloch initial

state Ink> the oscillations persist. For a wave packet, the oscillations of

the Bloch states constituting the packet get out of phase rapidly and their

cumulative effect dies out, leaving the carrier moving with the effective

mass. We can estimate the time T needed for this dephasing from the uncer-

tainty principle

Aar ~ ir, AcT - rh

ffh I2m 27rm
2 2 2

* h (Ak) (Ak)
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then from

we have

27rmQax) 2

In cgs units the electron mass and Dirac's constant are numerically roughly

equal. This means that the time required for the effective mass to be

"established" depends on the localization of the carrier

2
T- 2w(Ax) x in cm;

alternatively, if we take Ac- kT -.01 eV, we find r-10-13 sec.

To work out the velocity for very short times we start with

E n(k)Vnk+iqE • - 3Vk n'E :
= ak , nqE n

where we have already rewritten the interband term

ei1 X T e-kxj = EIn'k '><nvk1Ieikx e- Ink>
k n'kl

ikx a -ik> i nl-Lnc><n'klIe e- 'k>.
n n'

This can be integrated for a short time 6t starting at t-0 to first order in

the electric field

(t) " qE - 6t Xn'InK

n

where K - k + SE t.

': I ,, - -. ,,' ... ,,.,.,, ... ,,-,-, . ,'-' ..,- "'
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The velocity <v> - I - *f*VFd x to first order in E is

<V h fd3x[** + xflf ta~l~[i 1: X q n~n'

n

Th in(K) -qt F[, 1  VU*n'n

Temomentum matrix element is related to X nn by7

X nn ib nIm(E -E n)
so

21P '12

<v v (K) - E6t n
n m

Then using the f-sum rule 8 )

<v>v () -qEdt 1r 1)
n m U*

(K)ki q~t)~kE 6 t

n n' n Ii Bk

V v(k) + aE6t a 2 En(k) V(k) +S~
n h2 3k2 M
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this proves that for short enough times

<v(t)>- v(k) + qE6 t

that is to say, the carrier accelerates with the free electron mass and the

effective mass theorem fails. The implication of this failure can be clari-

fied by using a perturbation transformation due to Wannier 9)and Adamns 10 )

which removes the interband terms. To first order in E this was done, in the

11)
present problem,by Adams and Argyres .The appropriate multiband Houston

function is

tn *-~ q n n n I

where the * nkare one-band Houston functions. Now, leaving out all terms in

2
E ,the Schrodinger equation is

it$ iht4 Xq n cnik q
n n n k n n nnk

nkE 'EnkE: , nk qncn,

je7' T] [n1 n nk]

n~ i4-qE ~ n'k -qE~ (en-en )Xntn nk
~~iEn n n n' nen

# XnnInk
[en-iE [n cE n a ne ,~ I~[eiE ~ k3k nnqE 9k 'n

so to first order in E this multiband Houston function has ttk qE; furthermore

tj"' 4AN
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-< "E • - k_%, >
-k 3 x >n n '

M q , 1 < X *~ n + Xa n >
nk n!Cen nnlk ax nnlkM I Cnfl x J+E '

X ,n P ,i +X ,~ P nn 1 a e" Vnk + qE n C C nnn k k t xn nn n

and for these modified bands the effective mass theorem is valid to first

order in the electric field (Wannier has shown elsewhere12) that the decoupling

can be made exact).

We are now in a position to interpret these results. There are really

three phenomena taking part simultaneously. When the field is turned on, the

bound (filled band) electrons experience a force that alters their orbits; very

simply, the semiconductor becomes electrically polarized. This modification,

of course, happens to the wave functions of all the states, whether they are

filled or empty. This is the state mixing familiar, for example, from the

atomic Stark effect: the states of a hydrogen atom in an electric field can

be represented as a superposition of field-free states. Even the persistent

oscillations we have noted occur in this simple analog. Put in the crudest

terms, when the field is turned on suddenly on an electron in, say, the ground

state, it receives a "kick", its orbit is "shocked" and continues to "ring"

indefinitely. Ehrenfest's theorem holds--the initial acceleration of an elec-

tron bound to a proton in qE/m (but, of course, it does not continue to move

with free-electron dynamics).

The modified states Onk correspond to the polarized (Stark-mixed) states

of the atom. They are the states in a steady electric field, presumed to have
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been turned on infinitely slowly, so there are no oscillations. Unlike dis-

crete atomic bound states the nk as continuum states can experience accelera-

tion governed by effective mass dynamics. This is the second of the dynamical

phenomena.

The third phenomenon, electron tunneling, is implied by this discussion,

but has not yet been mentioned explicitly. The bound states of an atom do not

form a complete set; at high enough energy there is always an ionized continuum

Similarly, at high enough energy in a crystal there are empty closed or open

bands.

In a uniform electric field an electron can acquire in principle an unlim-

ited amount of energy. One way of representing this idea is by means of an

energy level diagram in which the vacuum level and the band energies are func-

tions of position - "tilted bands". Evidently levels or bands that are ener-

getically separate in the absence of a field, become degenerate when it is

present. This means that real as well as virtual band-to-band transitions

become possible. This phenomenon is crucial to the possible occurrence of

Zener oscillations, and we take it up quantitatively in the next section.

.. -I
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4.3.5 Tunneling and the Stark Ladder

Zener oscillations have not so far been observed, nor has anyone really

expected to observe them. That is so because under "readily realizable" con-

ditions the Zener oscillation period is appreciably longer than the mean time

between collisions of a carrier. "Readily realizable" conditions here means

fields small enough so that avalanche multiplication can be avoided. But there

appears to be some question whether Zener oscillations could be observed even

if the collision time could be increased well beyond the oscillation period.

The putative existence of the oscillations is based on the "theorems"

Ik - qE and v - -1 ae/ak. We have now seen that the validity or failure of

these approximations is bound up with interband transitions. It has been ar-

13)gued that because of the band mixing terms it cannot be established that a

carrier can on the average complete a full cycle of the oscillation.

The controversy is apparently not completely resolved--a paper on it has

appeared as recently as 197614). The argument is usually carried on in the

equivalent terms of quantized Stark levels. To follow this, it is easiest to

go back to the pre-1925 quantum theory. Since the collision-free motion of a

band electron is periodic, it is quantized according to the Bohr-Sommerfeld

phase integral pdq - 27M or the equivalent Bohr-Wilson rule Ae - 2M/T - qEa,

using T from p 1.

This is the electron energy spectrum of a band if the interband inter-

action is neglected. It is called a Stark ladder, and it should be observable

using available highly sensitive modulation spectroscopy methods such as electro-

reflectance measurements.

I [
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It has been objected13) that one cannot neglect the effect of the inter-

band terms for as long as a period of the Zener oscillation; or equivalently,

that the interband terms qEX n, are of the same order of magnitude as the Stark

ladder energy separation. This order-of-magnitude argument is plausible, because

the matrix element X, . u, Vku d I might well be of the order of the latticenn J n kn
unit cell

constant. This question can be resolved more precisely. What limits the Zener

oscillation is band-to-band tunneling, and if the band structure is known, tun-

neling probabilities can be calculated with reasonable confidence. We shall
15)

show a model calculation based on Kane's papers 1

Concern has also been expressed that the Stark ladder might not be obser-

vable because the spectrum is unstable "in the sense that the slightest change

in the direction of E completely alters the level structure....". The passage

in quotation marks is taken verbatim from Wannier's 1962 paper 12) . It is a

very surprising remark, since it was its author who originally proposed the

idea of a Stark ladder, and it can be disposed of readily. The meaning of the

remark is this: As the direction of E changes, the trajectory of an electron

in the extended Brillouin zone also changes direction, it will traverse dif-

ferent regions of the zone, the motion in real space may even become aperiodic,

etc.

However the effect of a small change in the direction of E on the real-space

motion is small. For example, if E is tilted slightly off a principal crystal

axis, the motion goes from being periodic to aperiodic; but the time taken to

traverse each unit cell of reciprocal space is still nearly equal, and the

aperiodicity is nothing more than a small modulation at a frequency incomeen-

surable with the fundamental or, in terms of the spectrum, a slight broadening

of the Stark levels.

iI
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4.3.6 Tunneling

We start with the time-independent Schrodinger equation in a field

- A:

[ n()+iqE L]bn k -qE 1 Xn nbn , ( bn(1).
X nt

We can get a one-band solution neglecting interband terms immediately:

-i e X (C ,(k'))dkk

The k-space geometry is sketched in Figure 1. The 6-functions are normalized

in the Brillouin Zone. K is the length of the line segment in the direction

of E subtended by the Brillouin zone, so it stands in a rational relation to

the dimensions of the zone only when E lies along a reciprocal lattice vector.

However, the incommensurability of K and i/a, although it is mathematically

troublesome, is evidently of no physical significance-this is the *am "problem"

as the instability of the Stark spectrum that we have just discussed in the

last paragraph.

When the trajectory in k-space is periodic, the boundary condition is

that the phase of the wave function bn nk must be the same at equivalent

points of the path of integration:

2- ( C. (k-))dk - m*2w m 1,2,...
fkl 1

giving a spacing of energy eigenvalues

f k ( m + l -n(k l))dk f 2 (C --c n (kI ))dk x  21qEJkl e[ l kl

but k2-k1 - K, so Ac - 2wqE/K. This is the Stark ladder; for the simplest

orientation of E, K - "j", so Ac " aqE.
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k F. k

figure 1. Section of the extended Brillouin zone
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Using this wave function we can immediately get the matrix element

between states of equal energy in bands n',n:

'n a -qE b*, (k)XnIn(k)b (k)dkx

E k

L- _ Xn, exp [E f Xdk'( (k)-c, (k'))] dkx1f nn q 0J X n n x

From this point the calculation proceeds by standard perturbation theory

methods. The Fermi golden rule gives a transition probability per second

Iw 2 ()

with

P(C K

Ae 27wqE

The calculation will be valid only if the transition probability is small for

times comparable with a Zener oscillation period.

This formulation is fairly abstract. To aid intuition, it is useful to

rewrite the wave function in the more familiar coordinate representation.

Since this is only for visualization purposes, we restrict the calculation to

one dimension, with K 2w/a. Using Ix> =f lk><klx>dk

qn(x) - /-P/rfdkeiunk(x) exp [2Ek(-c (k'))dk].

This integral can be evaluated approximately using the stationary phase method.

The integral is written as exp(if) where

f~kxk
f Mpne +arn (-c (k))dk'-inun

and expanded around the point of stationary phase k5 using
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f, 0 x + L(CC (k ))Unk
qE n s iknr~

in the form

f f(ks) +1 (k- )2f"(ks),

where

f "(kn -i a n -n 

s qE Ak s ak k
In the limit of "small" fields the terms involving U nk can be neglected and

the integral is
iks ex-i  k C (k') )dk'

q(x) - /a7- V2iT/if"(k s-)  e Seq

C _i[ s(_e (k')+aEx)dk') e 0

,v aqE/. 3 j (ks) 0 n

This is entirely plausible: The stationary phase trajectory is the relation

between x and k of the classical particle, i.e., the wave function q n(x)

"accumulates phase" along the classical particle orbit. To see this explicitly,

one can change variables from k to x. Along the classical orbit

x - t- dt - a-- n

so

dx 1 aen
7k- -Ea

dk qE k

This permits us to work out the phase of q(X):

" n
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0s(C-n(k)+qEx)dk - [fn(k )-cn(k)] dk

k ec(k Sn(k)dk k dk

-. qf k .- dk - qE kdx
o dk x

and we finally have explicitly

sx(aqE /2( -: k) 1/ 2 (x) e if kdx
qn(x) - (a() x

A schematic plot of this coordinate-space wave function (omitting the

rapid modulation by unk) is shown in Figure 2. The wave function is shown

in real space, drawn in spatial relation to a Zener tilted-energy-band diagram.

It is apparent that in this tilted-band representation all the wave func-

tions in a band are identical except for a lateral displacement by multiples

of the lattice constant. The figure also indicates how this picture fails when

there is another band separated from the band labeled n by a gap: the wave

function does not quite go to zero in the gap, so it can leak into the neighbor-

ing band, that is to say, the electron tunnels.

An intriguing question that has caused some argument comes from the pos-

sibility of eliminating the interband matrix element through the Wannier-Adams

transformation. We used this transformation to first order in E in the dis-

cussion of the effective mass acceleration theorem, and Wannier has shown that

the transformation can be carried out to all orders in E. Here it might be

taken to mean that a uniform steady field cannot cause tunneling, but Kane

has shown that this is not so, and indeed that the tunneling probability is

only slightly affected by the transformation. The proof proceeds as follows:

4 ,-
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Starting with the (for convenience one-dimensional) Schrodinger equation

[e(k)+iqE -L]b (k)-qEl: X , b Mk - cb (k)
n1

we now write explicitly

(1) (k) (k)-qEX (k)n nn

which takes into account the previously neglected first order polarization of

the bands by the field. Then

q~(C-en(k))dkl
b ()(k) - /a e

and the matrix element connecting equal-energy states in different bands is

M, = dk<k,n'IEXnIkn>

n q~ n j n

2 . -afdkXn n e " ( n k'- n' k')).

This matrix element will be used later to compute the tunneling probability.

Now the Wannier-Adams transformation is used to remove the interband terms to

first order:

iT iqEXnn
d (k) e b (k) withT nn
n n n(1)_C (1)

When this is substituted in the Schrodinger equation, there results

C n (k)+iqE ']d (k)+(qE) 2 E Qnndn (k) - (k)

where

(2)(k) " (1)(2 E  '  
I Xn n 12

U (k) e C.n -C no (1)

- ----.
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and

Q 1 X t X 1 + _ _ _ X n'n
Qn'n =2 L h Xn n -(1) (1)+ _(i )k (1) - (1)

n"On, n n nit n C nn n

Since the form of the wave equation is unaltered, the interband matrix element

now is
i !O k  .(2) r2

2 k ((2) (k' (k'))
(2) .(qE) 2a fdQ e n )-n'

n 27 dkQn'n e

But now the first term in Qnn--the term involving three bands n,n',n"-

is a higher order perturbation which was not taken into account in the calcula-

tion of the original matrix element, and accordingly should not be included

now. This leaves

__0
k d (2)

(2)  i(qE)2 _dk n qE dk' n -(k' n (k'))
n'n 2w 3k E()_ (i)

n n

(2) ( 2) Edk (2) .)_E:)(k2 )

2rf C (k)-en, (k) nn

n ni

where we have carried out a partial integration (the first term of which, giving

the contribution of the end points, is zero because En and X , are periodic in

k-space, and the phase of d must match at the end points). Thus we find thatn

the first and second order tunneling matrix elements differ only by the small

second order correction of the bandgap.

This appears to conflict with Wannier's and Adams and Argyes interpretation

of the properties of the modified Bloch bands, but the paradox is resolved as

follows: The interband terms Xnn , give rise to two effects, a polarization of

the band states (as for example the polarization of the filled valence band)

which can be ascribed to virtual transitions; and energy conserving interband

I--, :': . l I! l _s -- .2r 2?.. 2._... .. o :~--,a

"L .... _-_____,'-. . . , ..- ,:,Im ii ~ mi l i ii i iii
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tunneling arising from real transitions. The field-modified Bloch (or Houston)

functions are not bounded in either space or energy. and so they do not display

the effects separately. The energy eigenfunctions do, and they show that the

tunneling matrix elements are little affected by the Wannier-Adams transformation.

In the atomic hydrogen analogy we have used, the phenomenon we are describ-

ing is depicted in Figure 3, showing the states of a Coulomb potential in a

uniform external field. The electron has a small probability of tunneling out

the field ionization probability. This probability is nearly the same for the

field-free and for the Stark shifted bound state.

Ii

1i
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Figure 3. Field ionization as tunneling
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4.3.7 Detailed Calculation of the Tunneling Probability

The simplest example of a tunneling process is illustrated in Figure 4,

showing the penetration of a square barrier, and the wave functions that are

involved. The calculation of the tunneling probability for this configuration

is just like the calculation of energy transmission through a section of cutoff

waveguide.

A more realistic representation of bandgap tunneling is shown in Figure 5.

The upper half of this figure shows the conventional tilted-band representation

of the potential. The lower half gives a schematic plot of the electron energy

22
as a function of k , the square of the crystal momentum. In the bandgap k' is

negative (Tamm states), and the conduction and valence band are joined at the

branch point kB in complex k-space. If the field is small enough, so that the

slope of the tilted-band diagram is sufficiently gentle, the wave function can

be obtained using the WKB method:

*(x)- e- f (x)dx (x)

with

C(iK(x)) - Cc+C(X).

To carry this out, it is necessary to know the form of c(x), and this has

to be obtained from the band structure, as indicated schematically in Figure 5(b).

The connection of the WKB integral with the interband matrix element Mnn

can be appreciated from the coordinate form q X) of the wave function:ni
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v.b. P C+P?

e'V~ eIU (x)

Figure 4. Energies and wave functions for a square barrier
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PXIX
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H, -qE f q ,(x)X, (k)q(x)dx

fdx d'dxI]
-- aqEX nine i~frkdI

x0

-aqEX , e i ~kdx +f 0%k'dxt]

where the path of integration and the meeting point of the bands are chosen

by the method of steepest descent, using the band structure for imaginary k

in the bandgap. Such a calculation was carried out by Kane, using two-band

kip perturbation theory to model the band structure of a narrow-gap direct

semiconductor.

The band structure is obtained as follows. Starting with the one-band

Bloch function e 7 - e r %k (F) of a lattice periodic potential V(r) in the

Schrodinger equation (with p - -ih grad)

2.q,, - + V())4, - ego,
2m

we have
ti 2 2k2 +V

(2m m 2m ua n "J

For fixed k, the Ui are a complete basis for all lattice-periodic functions,

so that we can expand

N'r n1 ir XVu

Defining

2 -1 fk2- " + + v"2m a m +Vr

......" , llI%0Il
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so that

HkouUko Cn(ko0) un0
- nk0

and

2  22
o  +(_ ko)e +t (k-k ))u C

we substitute the expansion of unk about k0  multiply by u:, and integrate over

a unit cell. This yields

[(e.2 Cko 2 +( kk) I k-ko). C, -E (k) C
2.g(nk) 2m(k )dm nn' *u' n n n nn

n t

where

P f dr u Pun

unit
cell

To apply this to the conduction band and valence band of a direct-gap

semiconductor at Brillouin zone center, we take the zero of energy at the top

of the valence band. The Hamiltonian is

- -kp

22m
i-k

giving energies
2 1/

1 1 n_- 2m 2 "

The effective masses are

2
1 4-- 1 d k22

1k2 77--~ 2m 2 a 2kT- d k=O 4k /
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If we use the convention that effective masses are positive, this means

2
..1 2p + ±m

m2 g

and the two-band approximation is valid only if the bands repel enough to

make both m+ and m positive. The usual reduced effective mass is defined by

1 -1 1 1

m/2* 2 2 1/

so that p and m* are related by p - m(C /2m*) 1 2 and n - ( 2 + 2c9h k2/m,)

This provides the needed band structure, and we see that the conduction
and valence bands are Joined at k - s (kB in Figure 5) which makes n - 0:

2 h ( "2 +y z

The next step is to -compute Xn n = i f dr n~k - S-  . For this we need the

linear combinations uc , uv that diagonalize the Hamiltonian. In terms of the

zone center uco and uvO these linear combinations are

Uv - 1 [:(f.g)i/2Uco -g) /2UO]. __1 _0-g l 2 c -:, -g l 2 ]

In this model, the diagonal matrix elements vanish

X -X -0.
cc VV

The computation of Xcv is tedious but elementary

___
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i dd dr (n+ g) 1/2U*0+(n- ) 1/2u]

• - -1 [(nc )1/2Uc0_/(r *1/2

dk ) cO g O

- I- (n'l )1/2 d I (rlC )112 - 1 (C )1/2 1 (rrs )1/21
g dk,12 n g l J

i i d n C - i _ __c_'m-

2n dk 2 2 1/2 2n dk(rl -c ) t1 kv'!
g g

and since 
- C

2
Aai 4ct2k

dk 2rl m*

we finally have

c3/2

X = - i C St 3/2 and, of course, c -v r.cv r2 c v
nT 2m, 1 / 2

For M we need
cv

kx (c-Cv)dkx f kx dk

00

This is of the form

fkx(a+bu2)d .. -2 1/" atJ'ka )du - k. k(a+bk2 ) 1 +jn X x

where
2ct12  2cb 2

2e Y 2' t*a- c2 + it (k2+k2 ) b = - "

9 U* y M



4-75

then

.3E i fqj ndk xMX e 7 "0 xdk x

cv H f cv x
B.Z.

But, especially if E is small, most of the integral must come from the vicinity

of n - 0--the path of stationary phase. Since the path lies in a region of

complex kx, Mcv is a contour integral, and the contour must be chosen to pass

n - 0 (equivalent to k - s). So the contour must look like Figure 6, becausex

X has a pole at k - s. The contribution from the semicircle is half thecv x

residue at the pole. So using

3/2

X - - 1 withcv rm* 1/2  n 2

2 2 22 2Ct2
g +2e t k (s2-k so

ic 3/ 2 2 = i(C m*)1/2
Xcv 72m 2Cg (s 2 -k 2 2 2b (s 2_k 2)

9 X x

we have

SI dkx - iqE( efoS fndkx dk

f s - circle

circle

-rqE (em*) - ndk

because

dk i

(s+k)(s-k " 2s

semi-
circle
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Figure 6. Contour for calculation of the
tunneling matrix element
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Next we get the contribution from the horizontal portion of the path by

expanding ni about a. Let a - k-s, then

n 1 I(k 2s 2) 1 2(c /m*)1/2 t (sc)1
/2

ndk - 2(c s/m*) 1/2 2 3/2

g

and the integral over the horizontal portion contributes

-E 3/2j m* e[E l ndkx -f s ndk
A ,ri/2 47 e I2s

g

e 1/2 3/2
* _. %m*)1/2 e-4f idkx f; _ - " -, a

I& .. F.....e' f x daqE 3 m*
4rhs -

and using

f do i, '3/2  21rT-e --3

rfl -- 3--

I rqE(C m*) 1/2  i f ndk

hor

We have carried this calculation out in such great detail because our result

* differs from Kane's by a numerical factor (Kane has 2 where we find .
12 62

Evaluating

121 2 2ct t2  2 21
ndkx " ( )e + m* k. y +k ni

gg12

iTT M. 1/2 3/2 in C 1/9 2 2
C +/ 2 (k +k 2)

r -9 IIII2 y
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yields m1/2e 3/2 j1/2

g + re , l / 2 . L

cv 12H

(Kane's result contains the numerical factor l instead of -). Using this

matrix element, we find the tunneling probability per unit time from the Fermi

golden rule

21T 2P(e)
1 n

with P(e) R 2irqE

or MI/2 3/2 r2 i/2h

25r 222 )

w q- e 2qE h 2qE ,1/2 y z

This can be put in the form of a transmission coefficient

T =WTmE •

The prefactor of the exponential differs from Kane's value of The

difference is not significant, since the numerical value is probably an arti-

fact of the perturbation theory. An exact calculation for a sinusoidal crystal

potential by Kane and Blount1 6 ) (not using WKB) gives a prefactor unity.

It may be worth remarking that the second exponential factor in the trans-

mission probability might be visualized as arising from the wider bandgap that

has to be crossed by electrons with non-zero transverse momentum, but it must

be cautioned that a naive calculation that takes only this effect (and not the

detail of the bandstructure) into account yields the wrong functional dependence.
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If we write the transmission coefficient as

T - Te -1
0

then in numerically convenient units with C in electron volts, E in V/cmg

-4.04 x 107 I*1 __3
To MCe Mrn E

where C is the prefactor of order unity.

Even with rather large fields, one usually finds T 0<<. Examples are
~-3.5 x 10S5/E =14

InSb with e = 0.18, - .013, T GaAs with C05 14m* TO1e25x 0/ t
-- 1.4, T e 2 5 x1 7 /E etc. This is consistent with Avron's14) Stark

ladder calculation which views the Stark states as resonances and shows that

the resonances are narrow unless the bandgaps are very small.

If Kane's transmission coefficient is recalculated from a complete model

using a sinusoidal crystal potential instead of the k-p band structure, thus

2 2
t cg 2V0 ma V0

V(r) - 2V sinM, e 2_m9x 2
0 a g 2V0,

the result is

a2o2

2 qE -ce 1 . 3 2 x 105
To sc ce E

with the lattice constant a in Angstrom units.

For an electron in the (full) valence band the probability that it tunnel

to the (empty) conduction band is given by T times the probability that it is

in dk dky z
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dkydkz T e-a(ky 2+kz 2) C h1/2

(-)

so

2.Toa2
2 a 21r kldkLe - 2

(2Tr)

1/2 3/2

a2m 1/2q € 2 -
a m* qc Ce 2 /2hqE

2rtt- E 1/2
g

This is the form usually quoted for the tunneling probability; in the conve-

nience units as above, the prefactor is 0.41x 1O-8C m*)1/2 a E(t:T) 1/2

g 3
The number of electrons tunneling per Zener period per cm is

n,1/2€ C3/2

3 2 m*1/2qE
n' - (number in band/cm) .p -- p 22,qE

~g

m*1/2

In this expression the prefactor is 0.82 x 1016 () E this ismE

ag

4.6 x 104 E in GaAs, 3 x 104 E in InSb. A necessary criterion for a Zener

oscillator is that

n'<< number of oscillating conduction band carriers.

This criterion will not be difficult to meet. One may conclude that Zener

oscillations require primarily an adequate lengthening of the scattering times.
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